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Multiplexed and portable nucleic acid
detection platform with Cas13,
Cas12a, and Csm6
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Rapid detection of nucleic acids is integral for clinical diagnostics and biotechnological
applications.We recently developed a platform termed SHERLOCK (specific high-sensitivity
enzymatic reporter unlocking) that combines isothermal preamplification with Cas13 to
detect single molecules of RNA or DNA.Through characterization of CRISPR enzymology
and application development, we report here four advances integrated into SHERLOCK
version 2 (SHERLOCKv2) (i) four-channel single-reaction multiplexing with orthogonal CRISPR
enzymes; (ii) quantitative measurement of input as low as 2 attomolar; (iii) 3.5-fold increase
in signal sensitivity by combining Cas13 with Csm6, an auxiliary CRISPR-associated enzyme;
and (iv) lateral-flow readout. SHERLOCKv2 can detect Dengue or Zika virus single-stranded
RNA as well as mutations in patient liquid biopsy samples via lateral flow, highlighting its
potential as amultiplexable, portable, rapid, andquantitative detectionplatformof nucleic acids.

V
ersatile, rapid, and portable sensing of
nucleic acids is vital for applications in hu-
man health. The RNA-targeting CRISPR-
associated enzyme Cas13 (1, 2) has recently
been adapted for such purpose. This de-

tection platform, termed SHERLOCK (specific
high-sensitivity enzymatic reporter unlocking)
(3), can discriminate between inputs that differ
by a single nucleotide at very low concentrations
and can be lyophilized for portable deployment.
However, this technology has several limitations,
including the lack of quantitation and reliance
on fluorescence detection equipment for readout.
Here, we extend the SHERLOCK technology to
address these limitations and further develop
the utility of this platform.
Many applications require detection of more

than one target molecule in a single reaction,
and we therefore sought to create a multiplexed
platform that relies on specific cleavage prefer-
ences of Cas enzymes (2–5). To identify possible
candidate enzymes compatible with multiplex-
ing, we biochemically characterized three mem-
bers of theCRISPR-Cas13a family and 14members
of the CRISPR-Cas13b family (6, 7) (figs. S1 and
S2 and table S1). We profiled cleavage prefer-
ences on homopolymer reporters and found
that most orthologs preferred either uridine, a
combination of bases, or adenine (fig. S3 and

tables S2 to S5) and that cleavage could be im-
proved with buffer and CRISPR RNA (crRNA)
design optimization (figs. S4 to S7 and supple-
mentary methods). Among the adenine-cleaving
enzymes, Cas13b from Prevotella sp. MA2016
(PsmCas13b)wasmore sensitive thanCas13a from
LachnospiraceaebacteriumNK4A179 (LbaCas13a)
(fig. S8). We refined the cleavage sequence prefer-
ences by evaluating collateral activity across di-
nucleotidemotifs (Fig. 1A), finding a large diversity
of dinucleotide cleavage motif preferences (figs.
S9 and S10 and supplementarymethods). From
these dinucleotide cleavage screens, we found
that the activities of LwaCas13a, Cas13b from
Capnocytophaga canimorsus Cc5 (CcaCas13b),
LbaCas13a, and PsmCas13b could all be inde-
pendently measured with the four dinucleotide
reporters AU, UC, AC, and GA, respectively (Fig.
1B and fig. S11). Additionally, using a random
in vitro RNA library motif cleavage screen, we
identified numerous RNA oligomers of 6 bases
that allowed for further orthogonality between
Cas13 enzymes (figs. S12 to S15 and supple-
mentary methods).
Using these specific cleavage preferences, we

could detect synthetic Zika virus (ZIKV) ssRNA
in the HEX channel and synthetic Dengue virus
(DENV) ssRNA in the FAM channel in the same
reaction (fig. S16). To expand the in-samplemul-
tiplexing capabilities of SHERLOCK, we engi-
neered a detection systembased onCas12a (Cpf1),
which also exhibits collateral activity (8) (Fig. 1C).
Although Cas12a from Acidaminococcus sp.
BV3L6 (AsCas12a) collateral activity did not
produce a detectable signal at input concentra-
tions <10 nM, preamplification with recombinase
polymerase amplification (RPA) enabled single-
molecule detection at 2 aM (Fig. 1D and fig. S17)
(unless otherwise noted, all SHERLOCK reactions
that involve preamplification are performed in
two steps, with the RPA reaction mixture being

directly added to the Cas13 assay without any
purification step). For triplex detection, we de-
signed a LwaCas13a uridine reporter in the Cy5
channel, a PsmCas13b adenine reporter in the
FAM channel, and an AsCas12a ssDNA reporter
in the HEX channel (fig. S18A). We were able to
detect three targets (a synthetic ssDNA target,
ZIKV ssRNA, and DENV ssRNA) in a single re-
action (fig. S18B). We further extended detection
to four targets by leveraging orthogonal di-
nucleotidemotifs, with reporters for LwaCas13a,
PsmCas13b, CcaCas13b, andAsCas12a inFAM,TEX,
Cy5, and HEX channels, respectively (Fig. 1E), and
could distinguish all combinations of targets
(Fig. 1F).When combinedwith RPA, we detected
two DNA targets (the Pseudomonas aeruginosa
acyltransferase gene and the Staphylococcus
aureus thermonuclease gene) (Fig. 1G) at concen-
trations as low as the attomolar range (Fig. 1H).
Similarly,multiplexedSHERLOCKwithPsmCas13b
and LwaCas13a achieved attomolar multiplexed
detection of ZIKV and DENV RNA dilutions as
well as allele-specific genotyping of human saliva
samples (fig. S19). These advances on in-sample
multiplexing via orthogonal base preferences al-
low for many targets to be detected at scale and
for cheaper cost.
We next focused on tuning the output of the

SHERLOCK signal to make it more quantitative,
sensitive, and robust to broaden the utility of
the technology. SHERLOCK relies on an expo-
nential preamplification, which saturates quickly
and hinders accurate quantitation, but we ob-
served that more dilute primer concentrations
increased both raw signal and quantitative ac-
curacy, indicating that at lower primer concen-
trations, the reaction does not saturate (Fig. 2,
A and B, and fig. S20, A to E). We tested a range
of primer concentrations and found that 240 nM
exhibited the greatest correlation between sig-
nal and input (fig. S20F), and quantitation was
sustainable across a large range of sample con-
centrations as low as the attomolar range (Fig. 2C
and fig. S20G). Many applications of nucleic acid
detection, such as HIV detection (9, 10), require
single-molecule-per-milliliter sensitivity, and
we therefore tested whether the detection limit
could be pushed beyond 2 aM, allowing formore
dilute sample inputs into SHERLOCK. By scaling
up the preamplification RPA step, we found
that LwaCas13a could produce a detection signal
for 200, 80, and 8 zM input samples and allow
for single-molecule volume inputs of 250 and
540 ml (fig. S21, A and B), and PsmCas13b could
detect 200 zM input samples in 250-ml reactions
(fig. S21C).
To amplify the detection signal, we leveraged

the CRISPR type III effector nuclease Csm6
(11–17), which is activated by cyclic adenylate
molecules or linear adenine homopolymers ter-
minated with a 2′,3′-cyclic phosphate (18, 19).
LwaCas13a and PsmCas13b collateral activity
generates cleavage products with hydroxylated 5′
ends and 2′,3′-cyclic phosphate ends (fig. S22), sug-
gesting that Cas13 collateral activity could gen-
erate Csm6 activating species, whichwould allow
for amplified signal detection in the SHERLOCK
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Fig. 1. Multiplexed SHERLOCK detection with orthogonal collateral
activity of class 2 enzymes. (A) Schematic of assay for determining
dinucleotide preferences of Cas13a/b enzymes. (B) Collateral activity
of LwaCas13a, CcaCas13b, LbaCas13a, and PsmCas13b on orthogonal
dinucleotide reporters. (C) Schematic of collateral activity of Cas12a
activated by double-stranded DNA (dsDNA). (D) Comparison of collateral
activity and preamplification enhanced collateral activity (SHERLOCK)
of LwaCas13a, PsmCas13b, and AsCas12a. The dotted line denotes
2e9 (aM), the limit of AsCas12a sensitivity without preamplification.

Values represent mean ± SEM. (E) Schematic of in-sample four-channel
multiplexing with orthogonal Cas13 and Cas12a enzymes. (F) In-sample
multiplexed detection of ZIKV ssRNA, ssRNA 1, DENV ssRNA, and dsDNA 1
with LwaCas13a, PsmCas13b, CcaCas13b, and AsCas12a, respectively.
(G) Schematic of in-samplemultiplexed detection ofS. aureus thermonuclease
and P. aeruginosa acyltransferase synthetic targets with LwaCas13a and
PsmCas13b. (H) In-sample multiplexed RPA and collateral detection at
decreasing concentrations of S. aureus thermonuclease and P. aeruginosa
acyltransferase synthetic targets with LwaCas13a and PsmCas13b.
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assay. By testing RNA adenylate molecules of
different lengths and 3′-end modifications (figs.
S23 and S24A and table S6), we found that Csm6
from Enterococcus italicus (EiCsm6) and Csm6
from Lactobacillus salivarius (LsCsm6) were
efficiently activated by hexadenylates contain-
ing 2′,3′-cyclic phosphate ends (fig. S24, B and
C). Moreover, EiCsm6, LsCsm6, and Csm6 from
Thermus thermophilus (TtCsm6) demonstrated
a strong cleavage preference for A- and C-rich
reporters based on reporter screening, enabling
independent measurements of LwaCas13a and
Csm6cleavage activity in separate channels (Fig. 2D
and figs. S24, B to D, S25, and S26, A to E).
To couple the activity of Cas13 with Csm6 ac-

tivation, we designed protected RNA activators
that contained a polyadenylate [poly(A)] stretch
followed by a protecting poly(U) stretch that
could be cleaved by a uracil-preferring Cas13
enzyme, with the rationale that LwaCas13a
could degrade all the uridines down to the homo-
polymeric A stretch because it had robust ac-
tivity on UU and AU two-base motifs (fig. S9).
We found that, upon addition of target and
LwaCas13a-crRNA complex, EiCsm6 andLsCsm6
were activated by the (A)6-(U)5 activator, con-

sistent with the finding that the A6 activator is
optimal for Csm6 activation and confirmed by
mass spectrometry (Fig. 2E and figs. S26F, S27,
and S28). We combined the reporters for both
Csm6 and Cas13 in the same reactionwithin the
same fluorescence channel and found that in-
creasing the activator concentration increased
the synergistic activation of Csm6 by Cas13 for
DENV ssRNA detection (Fig. 2F), and that in-
creasing the Csm6-specific poly(A) reporter also
increased the Csm6 signal, leading to a larger
increase in signal upon activator addition (fig. S29,
A and B). After optimization (fig. S30), we found
that Csm6-enhanced LwaCas13a increased the
overall signal and kinetics of synthetic acyl-
transferase genedetectionbySHERLOCK (Fig. 2G).
Another goal of SHERLOCKv2 was engineer-

ing a visual readout of activity requiring no
additional instrumentation. We first tested a
colorimetric ribonuclease (RNase) reporter based
on gold nanoparticle cluster disaggregation
(20, 21), but this readout required a level of
RNase activity beyond what Cas13 collateral ac-
tivity could achieve (fig. S31). We then designed
a lateral-flow readout that was based on the
destruction of a FAM-biotin reporter, allowing for

detection on commercial lateral flow strips. Abun-
dant reporter accumulates anti-FAM antibody-
gold nanoparticle conjugates at the first line on
the strip, preventing binding of the antibody-
gold conjugates to protein A on the second line;
cleavage of reporter would reduce accumula-
tion at the first line and result in signal on the
second line (Fig. 3A). We tested this design for
instrument-freedetectionofZIKVorDENVssRNA
and found that detectionwas possible in <90min
with sensitivities as low as 2 aM (Fig. 3, B and C,
and fig. S32). Moreover, we found that we could
do rapid (<10 min) genomic DNA extraction
from human saliva and input this directly into
SHERLOCK without purification for rapid geno-
typing in <23min by fluorescence and 2 hours by
lateral flow (fig. S33). This exemplifies a closed-
tube assay format inwhich the entire SHERLOCK
reaction is performed in a one-pot assay without
any sample purification.
We also applied the system to create a rapid

and portable paper test for detecting mutations
in liquid biopsies of non–small cell lung cancer
(NSCLC) patients. We designed SHERLOCK as-
says to detect either the epidermal growth factor
receptor (EGFR) Leu→Arg (L858R) mutation or
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Fig. 2. Single-molecule quantitation and enhanced signal with
SHERLOCK and Csm6. (A) Schematic of DNA reaction scheme for
quantitation of P. aeruginosa synthetic DNA. (B) Quantitation of P. aeruginosa
synthetic DNA at various RPA primer concentrations. Values represent
mean ± SEM. (C) Correlation of P. aeruginosa synthetic DNA concentration
with detected fluorescence. Values represent mean ± SEM. (D) Schematic
of independent readout of LwaCas13a and Csm6 cleavage activity with

orthogonal reporters. (E) Activation of EiCsm6 by LwaCas13a cleavage of
adenine-uridine activators with adenine tracts of different lengths. LwaCas13a
is targeting synthetic DENV ssRNA. Values represent mean ± SEM.
(F) Combined LwaCas13a and EiCsm6 signal for increasing concentrations
of (A)6-(U)5 activator detecting 20 nM of DENV ssRNA. Values represent
mean ± SEM. (G) Kinetics of EiCsm6-enhanced LwaCas13a SHERLOCK
detection of P. aeruginosa acyltransferase synthetic target.
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the exon 19 deletion (five amino acids) and iso-
lated cell-free DNA (cfDNA) from patients with
or without these mutations (Fig. 3D), as verified
by targeted sequencing (table S7). SHERLOCK
successfully detected these mutations, both with
fluorescence-based readout (Fig. 3, E and H)

and lateral flow–based readout (Fig. 3, F, G, I,
and J, and fig. S34, A to D). Fluorescence-based
SHERLOCK could also detect a different com-
mon EGFRmutation, Thr→Met (T790M), in syn-
thetic and patient cfDNA liquid biopsy samples
(fig. S34, E and F).

To improve the robustness of the detection
and reduce the likelihood of a false-positive
readout, we combined Csm6 with Cas13 detec-
tion on lateral flow (Fig. 3K). We tested lateral-
flow reporters of various sequences and lengths
in the presence of Csm6 and activator and found
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Fig. 3. Adapting SHERLOCK for lateral flow detection. (A) Schematic of
lateral-flow detection with SHERLOCK. (B) Detection of synthetic ZIKVssRNA
using lateral-flow SHERLOCK with 1 hour of LwaCas13a reaction.
(C) Quantitation of band intensity from detection in (B). (D) Schematic of
lateral flow detection of therapeutically relevant EGFR mutations from patient
liquid biopsy samples. (E) Detection of EGFR L858R mutation in patient-
derived cfDNA samples with either L858R or wild-type (WT) alleles.
Values represent mean ± SEM. (F) Lateral-flow detection of EGFR L858R
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(G) Quantitation of band intensity from detection in (E). (H) Detection of
EGFR exon 19 deletion mutation in patient-derived cfDNA samples with either
exon 19 deletion or WTalleles. Values represent mean ± SEM. (I) Lateral-flow
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that a long A-C reporter demonstrated strong
cleavage signal (fig. S35, A and B). We used this
reporter in combination with the Cas13 lateral-
flow reporter for rapid detection ofDENV ssRNA,
relying solely on Csm6 for amplification (i.e., in
the absence of RPA) (Fig. 3L). We subsequently
combined RPA, Cas13/Csm6, and lateral-flow
readout to detect an acyltransferase target
and found that the increase in signal conferred
by Csm6 allowed for more rapid detection by
lateral flow (fig. S35, C and D) with reduced
background.
Finally, we applied SHERLOCKv2 in a simu-

lated approach that involves Cas13 serving as
both a companion diagnostic and the therapy
itself, as Cas13 has been developed for a variety
of applications in mammalian cells, including
RNA knockdown, imaging, and editing (22, 23)
(Fig. 4A and table S8). We recently harnessed
Cas13b from Prevotella sp. P5-125 (PspCas13b) to
correct mutations underlying genetic diseases by
using a system called RNA Editing for Program-
mableA-to-IReplacement (REPAIR) (23). Todirect
andmonitor the outcomeof a treatment,we tested
if SHERLOCK could be used both for genotyp-
ing to inform the REPAIR treatment and as a
readout of the edited RNA to track the efficien-
cy of the therapy. We used a mutation in APC
(APC:c.1262G>A) implicated in familial adenom-
atous polyposis 1 (Fig. 4, B and C) (24) and trans-
fected synthetic healthy and mutant cDNAs of
the fragment surrounding the mutation into
human embryonic kidney (HEK) 293FT cells.
We harvested DNA from these cells and suc-
cessfully genotyped the correct samples by using
single-sample multiplexed SHERLOCK with
LwaCas13a and PsmCas13b (Fig. 4D). Concur-
rently, we designed and cloned guide RNAs for
the REPAIR system and transfected cells that
had the diseased genotype with the guide RNA
and dPspCas13b-ADAR2dd(E488Q) REPAIR sys-
tem. We confirmed editing by next-generation
sequencing analysis, finding that 43% editing
was achieved with the REPAIR system (Fig. 4E),
andwe could detect this editingwith SHERLOCK
(Fig. 4F and fig. S36).
The additional refinements presented here

for Cas13-based detection allow for quantitative,
visual,more sensitive, andmultiplexed readouts,
enabling additional applications for nucleic
acid detection, especially in settings where por-
table and instrument-free analysis is necessary
(table S9). SHERLOCKv2 can be used for multi-
plexed genotyping to inform pharmacogenomic
therapeutic development and application, detect-
ing genetically modified organisms in the field,
or determining the presence of co-occurring path-
ogens. Moreover, the rapid, isothermal readout of
SHERLOCKv2, enabled by lateral flow and Csm6,
provides an opportunity for detection in settings
where power or portable readers are unavailable,
even for rare species like circulating DNA. In the
future, itmight be possible tomake solution-based
colorimetric readouts andmultiplex lateral-flow
assays containing multiple test lines for differ-
ent targets. Improved CRISPR-based diagnostic
(CRISPR-dx) nucleic acid tests make it easier

to detect the presence of nucleic acids in a range
of applications across biotechnology and health
and are now field-ready for rapid and portable
deployment.
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Fig. 4. Combined therapeutics and diagnostics with Cas13 enzymes. (A) Schematic of time line
for detection of disease alleles, correction with REPAIR, and assessment of REPAIR correction.
(B) Sequences of targets and crRNA designs used for detection of APC alleles. (C) Sequences of
target and REPAIR guide design used for correction of APC alleles. (D) In-sample multiplexed detection
of APC alleles from healthy- and disease-simulating samples with LwaCas13a and PsmCas13b.
Adjusted crRNA ratio allows for comparisons between different crRNAs that will have different
overall signal levels (see supplementary methods for more details). Values represent mean ± SEM.
(E) Quantitation of REPAIR editing efficiency at the targeted APC mutation. Values represent
mean ± SEM. (F) In-sample multiplexed detection of APC alleles from REPAIR targeting and nontargeting
samples with LwaCas13a and PsmCas13b. Values represent mean ± SEM.
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