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Here, we present a generalized method of guide RNA “tuning” that
enables Cas9 to discriminate between two target sites that differ by a
single-nucleotide polymorphism. We employ our methodology to gen-
erate an in vivo mutation prevention system in which Cas9 actively
restricts the occurrence of undesired gain-of-functionmutationswithin
a population of engineered organisms. We further demonstrate that
the system is scalable to a multitude of targets and that the general
tuning and prevention concepts are portable across engineered
Cas9 variants and Cas9 orthologs. Finally, we show that themutation
prevention system maintains robust activity even when placed
within the complex environment of the mouse gastrointestinal tract.
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There are few biological perturbations that rival point muta-
tions when it comes to the power to affect phenotypic change.

Single-base substitutions endow pathogens with resistance to an-
tibiotics and rogue cells with oncogenic potential (1, 2). Despite
decades of research into the causes and effects of point mutations,
no tool exists to directly prevent their occurrence. At best, we can
track when mutations occur and utilize them as prognostic factors
to predict emergent properties or chemotherapeutic outcome (3,
4). Here we describe an in vivo “mutation prevention” system that
can prevent the occurrence of targeted point mutations with little
to no latent toxicity to the host organism.
The system is predicated on Streptococcus pyogenes Cas9 (hereon

referred to as Cas9) and its orthologs: endonucleases directed to a
target locus via hybridization between an associated guide RNA
(gRNA) and a target site near a required protospacer adjacent
motif (PAM) (5–8). While incredibly plastic, Cas9 suffers from
difficult-to-predict nonspecific activity, which can be tolerant to
multiple mismatches between the gRNA and the inappropriately
bound locus (9–20). Several groups have presented approaches
that confer greater specificity to Cas9 (in some cases demon-
strating single-nucleotide specificity) (13, 21–29). These tech-
niques, including those involving engineered Cas9 proteins, can still
fall short in applications where near-absolute single-nucleotide dis-
crimination is required, necessitating the introduction of alterna-
tive approaches. To endow Cas9 with the ability to discriminate
between single-nucleotide polymorphisms (SNPs), we developed a
screening methodology that confers single-nucleotide specificity
through the selection of a tuned guide RNA (tgRNA).

Results
To demonstrate the feasibility of preventing the emergence of point
mutations with a Cas9/tgRNA system, we generated a strain of
Escherichia coli deficient in mismatch repair (MG1655-mutS::kan),
to increase mutation rates, and harboring a plasmid encoding
a catalytically inactive version of the TEM-1 β-lactamase (TEM-1-
S68N) (30, 31). The active version of TEM-1 confers resistance
to β-lactam antibiotics, such as ampicillin (32). Under typical
growth conditions, errors in DNA replication and repair lead to
the accumulation of mutations over time. Some of these mutations

result in the reversion of the inactive N68 allele to its catalytically
active form, S68. The number of revertants within the population
is quantified by plating overnight cultures to solid media con-
taining ampicillin (Fig. 1A).
We postulated that we could prevent these reversions by in-

troducing a Cas9 system tuned to cut the active TEM-1 variant
while exhibiting undetectable activity against the inactive allele.
In practice, such a system would benignly persist within cells until
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the occurrence of the reversion. Cas9 would then cut at the ac-
tive allele, causing irreparable genetic damage and a decrease in
the overall number of ampicillin-resistant cells (Fig. 1B). By design,
the inactive form of TEM-1 differs from the active form by a single-
nucleotide substitution (203G > A). Our initial, naive system in-
cluded a gRNA with full complementarity to the active S68 allele
(203G) and thus only differed from the inactive N68 allele by a
single nucleotide. As expected, this approach performed poorly, as
the Cas9/gRNA system cut both the active and inactive forms ef-
ficiently. Consequently, the system exhibited high toxicity even in
the absence of the reversion (data not shown). Furthermore, we
found that even the high-fidelity eCas9 and Cas9-HF1 variants failed
to confer single-nucleotide discrimination with the naive one-off
gRNA, as indicated by a sharp decrease in viability for cells car-
rying the system (25, 26) (SI Appendix, Table S1).
Previous work examining the factors that influence Cas9 be-

havior has shown that its activity is easily modulated by the
introduction of mismatches within the gRNA that prevent full
complementarity between it and the target site (5, 10, 11). We pos-
ited that, for a given pair of targets that differ by a single base, there
may exist a set of mismatches within the gRNA that would elim-
inate activity on one of the variants while maintaining robust ac-
tivity on the other. To test our hypothesis, we screened a library of
gRNAs that each differed from the active TEM-1 allele (S68) by a
single mismatch and from the inactive TEM-1 allele (N68) by two
mismatches (SI Appendix, Fig. S1). We focused our mutational
analysis on the region within the gRNA that interacts with the bases

proximal to the PAM at the target locus, as these residues have been
shown to be most critical for Cas9 activity (5, 9–11).
Our screen was designed such that an ideal tgRNA candidate was

expected to be markedly depleted when in the presence of the
functional S68 allele (signifying that it cut the undesired TEM-
1 variant that we wish to prevent) and strongly enriched when tested
against the nonfunctional N68 allele (suggesting that it did not cut
the desired TEM-1 variant we wish to maintain). Upon performing
the screen, we identified several promising tgRNA candidates that
were subjected to further characterization (Fig. 1C).
Individual testing of these select library members revealed that

the fold depletion we observe within the screen strongly corre-
lates with their respective activities in isolation (SI Appendix, Fig.
S2). This validates the capability of our library approach to ac-
curately identify the most discriminatory gRNAs. Based on the
results of our screen and subsequent validation, we selected the
three candidate tgRNAs with the greatest discriminatory power,
6A, 6G, and 6T, for additional analysis. We tested their ability to
prevent emergence of the active TEM-1 allele from within a
population of cells containing only the inactive TEM-1 variant.
As predicted, all three tgRNAs were able to prevent reversion to
the active TEM-1 allele by several orders of magnitude over cells
with a nonfunctional control gRNA, while also exhibiting mini-
mal levels of baseline toxicity (Fig. 1 D and E).
Because SP-Cas9 represents one of thousands of known Cas9

proteins, each with differences in efficiency, specificity, and PAM
requirements, we sought to verify that our approach was generaliz-
able to two commonly used Cas9 orthologs: NM-Cas9 and ST1-Cas9
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Fig. 1. Mutation prevention system overview and performance. (A) Mutations conferring antibiotic resistance occur stochastically over time in native
bacterial populations. When antibiotic pressure is applied to the population, cells with resistance-conferring mutations survive, while wild-type cells die.
(B) Cells with the mutation prevention system grow and divide normally. When a targeted resistance-causing mutation occurs it is cut by Cas9, causing its loss
from the population. (C) Screening for tgRNAs designed to prevent the reversion of inactive TEM-1 to its catalytically active form (conferring ampicillin
resistance). In this assay, properly tuned gRNAs are expected to be enriched in the presence of the inactive target (N68) and depleted in the presence of the
active target (S68). The y axis indicates the additional tuning mismatch that is inserted into each respective gRNA. The dotted line represents a relative fold
enrichment of 1, above which library members are considered enriched and below which they are considered depleted; n = 3 independent biological rep-
licates. (D) Representative spot assay demonstrating the performance of mutation prevention systems containing the three most discriminatory tgRNAs (as
indicated by the screening process). Each spot represents a 10-fold serial dilution. (E) The most discriminatory tgRNAs consistently prevent mutations to
baseline levels, while not affecting the overall number of colony-forming units present within the culture under nonselective conditions; n = 5 independent
biological replicates. All reversion rates are significant relative to the control (P < 0.01); all cfu/mL counts are not significant relative to the control (P > 0.01).
For all experiments the control gRNA represents a guide that targets a sequence not present within the E. coli genome. All error bars represent SEM.
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(33, 34). We leveraged the same TEM-1 reversion assay and gRNA
screening technique to identify tgRNAs with high discriminatory
power between the active and inactive targets. Each screen yielded
promising tgRNA candidates that proved to be highly effective at
preventing the TEM-1 reversion mutation with either NM-Cas9 or
ST1-Cas9, respectively (SI Appendix, Fig. S3).
Having demonstrated the efficacy of the mutation prevention

concept with our exogenous TEM-1 model, we sought to apply
the same approach to prevent endogenous mutations. Toward
this goal, we set out to prevent several common mutations within
E. coli that confer resistance to two clinically relevant antibiotics:
streptomycin and rifampicin (35).
Streptomycin is an aminoglycoside antibiotic that inhibits

protein synthesis by binding to bacterial ribosomes (36). There
are well-characterized ribosomal protein mutations that confer
resistance to streptomycin, including commonly observed sub-
stitutions in rpsL (37). We designed mutation prevention systems
for two of the highest-frequency resistance-bearing mutations

within rpsL: 128A > G and 263A > G. Our screening process
yielded two effective tgRNAs, both of which prevented the oc-
currence of their targeted mutations to below the detection limits
of our next-generation sequencing assay, while causing no apparent
toxicity to nonmutant cells (Fig. 2A and SI Appendix, Table S2).
Rifampicin is a widely used antibiotic that inhibits RNA polymer-

ase function, with resistance arising from several well-documented
mutations within the rpoB gene (38, 39). To further demonstrate the
plasticity of our approach, we targeted a series of the prominent
rifampicin-resistance mutations and generated unique tgRNAs
against each using three disparate design principles. To prevent the
rpoB 1534T > C mutation, we screened a series of gRNAs and
identified a canonical tgRNA, bearing additional mutations, that
was highly efficient (Fig. 2B). Targeting the rpoB 1547A>Gmutation
was simplified by the fact that the mutation generates a PAM that
is not present within the wild-type rpoB gene. A gRNA designed to
bind in the presence of the generated PAM conferred marked mu-
tation prevention (Fig. 2B). Finally, to prevent the rpoB 1546G > T

Spacer identity Spacer identity

tg
R

N
A

.1
C

co
nt

ro
l

Spacer identity

0.0

0.2

0.4

M
ut

at
io

n 
fr

eq
ue

nc
y

tg
R

N
A

.8
C

co
nt

ro
l

Spacer identity

0.0

0.5

1.0

M
ut

at
io

n 
fr

eq
ue

nc
y

rpsL 128A>G rpsL 263A>G

tg
R

N
A

.4
A

co
nt

ro
l

Spacer identity

0.00

0.05

0.10

M
ut

at
io

n 
fr

eq
ue

nc
y

Spacer identity

0.0

0.5

1.0

M
ut

at
io

n 
fr

eq
ue

nc
y

gR
N

A
(d

et
ec

t P
A

M
)

co
nt

ro
l

Spacer identity

0.0

0.2

0.4

M
ut

at
io

n 
fr

eq
ue

nc
y

gR
N

A
(N

G
A

 P
A

M
)

co
nt

ro
l

rpoB 1534T>C rpoB 1547A>G rpoB 1546G>T

rpoB
1534T>C      1547A>G

M
ut

at
io

n 
fr

eq
ue

nc
y

du
al

 tg
R

N
A

co
nt

ro
l

du
al

 tg
R

N
A

co
nt

ro
l

rpoB
1534T>C     1547A>G

rpsL
128A>G      263A>G

M
ut

at
io

n 
fr

eq
ue

nc
y

co
nt

ro
l

qu
ad

 tg
R

N
A

0.0

0.4

0.8

co
nt

ro
l

qu
ad

 tg
R

N
A

co
nt

ro
l

qu
ad

 tg
R

N
A

co
nt

ro
l

qu
ad

 tg
R

N
A

0.0

0.2

0.4

A B

C D
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mutation, we employed the Cas9-VQR variant with altered
PAM specificity (40). This was necessary given the lack of a
canonical PAM sequence near the mutation site. Cas9-VQR, in
the presence of an appropriate gRNA, led to efficient mutation
prevention (Fig. 2B).
Having demonstrated both the portability and flexibility of our

mutation prevention concept, we next assessed its scalability by
targeting multiple mutations within rpoB with a single system.
There was no obvious decrease in efficiency upon multiplexing,
with both rpoB 1534T > C and 1547A > G mutations being si-
multaneously prevented within the engineered strain (Fig. 2C).
To further probe the limits of our multimutation prevention system,
we sought to simultaneously inhibit all of the previously targeted
endogenous mutations (except rpoB 1546G > T, which requires
the Cas9-VQR variant) within a single strain. Cells carrying a full
complement of four tgRNAs exhibited minimal toxicity compared
with cells carrying nontargeting control gRNAs and retained ro-
bust mutation prevention against all targeted loci (Fig. 2D and SI
Appendix, Table S2).
We next wanted to assess the robustness of our system by pre-

venting point mutations from emerging within a complex in vivo
environment. Toward this goal we inoculated gnotobiotic mice with
one of two strains containing either a pair of nontargeted gRNAs
or a pair of tgRNAs directed to prevent mutations that confer
rifampicin resistance within E. coli. Two days after coloniza-
tion, mice were provided rifampicin within their drinking water
and the spectrum of rifampicin resistance mutations was ana-
lyzed in bacterial cells recovered from fecal samples collected
on days 4–7, postcolonization (Fig. 3A). We observed minimal
frequencies of the targeted point mutations within the engi-
neered strain, relative to the much higher frequencies within
the control, across all days (Fig. 3B).

Discussion
It is expected that the mutator strain of E. coli utilized within all
of our experiments would commensurately increase the fre-
quency of mutations that disable the mutation prevention system
itself (3, 30). Given that the system is likely breaking at an ap-
preciable rate, the fact that we do not see obvious degradation in
its performance over time likely indicates that the system places
a negligible fitness burden on the host organism. If the system
were to place a significant fitness burden on its host, one would
expect individuals with attenuated or broken systems to rapidly
overtake the population, thus facilitating escape from its selec-
tion. It is thanks to this minimal fitness burden that escape is an
extremely rare event. This is due to the fact that during any given
point in time there is only a small population of cells within the
total population that have inactivated the system and it is within
this rare population that a second targeted gain-of-function
mutation must occur. This “two-hit” requirement effectively makes
escape from our mutation prevention strategy an extremely rare
event and explains our efficacy at preventing undesired mutations.
The robust performance of the mutation prevention system within
the mouse gastrointestinal tract is particularly notable given its tol-
erance of multiday rifampicin selection, the absence of the active
selection for the episomal plasmid encoding our system, and the fact
that these experiments were performed within a highly mutagenic
mismatch repair deficient background of E. coli.
Although our mutation prevention strategy requires antecedent

knowledge of the target mutation(s), we note that there is already a
plethora of known gain-of-function mutations that endow living cells
with undesired phenotypes. In these cases, users may want to prevent
a subset of these mutations to gain deeper insight into the existence
and effects of other rarer alleles. In addition, rapid increases in both
the affordability and adoption rate of next-generation sequencing
will catalyze the eventual systematic characterization of genomic
mutations that enable cells to evade the selective pressures imposed
upon them by both natural and artificial systems. Our method will

enable experimentalists to capitalize upon this expansive character-
ization, and in turn, manipulate it to prevent undesired outcomes.
This study focused on preventing gain-of-function mutations

within microbial systems, in which cutting leads to loss of episomal
elements or lethality when the target is present within the genome
(41–44). When applying similar strategies to higher eukaryotes the
effect of nonhomologous end joining-based mutagenesis (NHEJ)
must be considered, as noninactivating mutations have been shown
to occur that can themselves lead to gain-of-function phenotypes
(45, 46). As the outcome of NHEJ-based repair has been shown to
be nonrandom, a potential strategy to mitigate Cas9 derived gain-
of-function alleles would be to prescreen the selected target locus
and tgRNA to determine the spectrum of observed repair profiles,
post Cas9-mediated cleavage.
The design of sufficiently discriminatory tgRNAs currently ne-

cessitates library screens in the spirit of those described within this
text. That is, it is necessary to empirically test a small library of
candidate tgRNAs to find the guide sequence that is both effective
at cutting the target allele while exhibiting minimal cutting against
the desired allele. Fortunately, these screens are easy to perform
with standard laboratory equipment and do not require costly high-
throughput oligo synthesis. In some cases, more extensive screens
(or further system optimization) may be required due to lingering
levels of system toxicity, as is evidenced by the mild decreases in
cfu/mL that we saw with the NM and ST1 tgRNA libraries (SI Ap-
pendix, Fig. S3). We do not, at this time, have sufficient screening data
to propose an in silico model for forward design of tgRNAs; however,
we do anticipate that, given sufficient adoption of this technique, such
an approach may be possible in the future.
Even in its nascent form, the described mutation prevention

system provides the scientific community with a powerful means
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Fig. 3. Longitudinal mutation prevention in a complex in vivo environment.
(A) Two cohorts of mice were colonized with either an experimental E. coli
strain encoding the dual rpoB 1534T > C/1547A > G mutation prevention
system or a control E. coli strain encoding a system with two gRNAs that do
not cut anywhere in its genome. After a 2-d initial colonization, mice were
provided water containing the antibiotic rifampicin for the remaining 5 d of
the experiment. (B) The mutation prevention system successfully prevented
the occurrence of the two targeted mutations for the duration of the ri-
fampicin treatment. All error bars represent SEM, n = 2 independent bi-
ological replicates for control cohort, n = 3 independent biological replicates
for experimental cohort.
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to directly manipulate evolutionary outcomes and in doing so
gain fundamental insights into evolutionary plasticity and adap-
tive mechanisms. Furthermore, as our ability to engineer tar-
geted nucleases such as Cas9 continues to rapidly improve, one
can imagine the eventual generation of increasingly complex mutation
prevention strategies. We further expect that the generalizable prin-
ciple of guide RNA tuning will exhibit synergistic performance im-
provements with newly engineered, high-specificity variants of Cas9
(26, 27, 29), as well as orthogonal DNA binding proteins like Cpf1
(47, 48). As a result, applications requiring true single-nucleotide
specificity, such as the disabling of diseased alleles delineated by
SNPs, will finally be realized.

Materials and Methods
Experiments were performed in an E. coli MG1655-mutS::kan background
(received as a gift from Dr. Harris Wang, Columbia University, New York); all
gRNA/tgRNA screening experiments were performed in a wild-type E. coli
MG1655 background. Overnight liquid cultures were grown in lysogeny
broth (LB) supplemented with the appropriate antibiotic(s) and incubated at

37 °C for 12 h, with shaking. Overnight solid cultures (including spot assays
and mutation assays) were grown on LB agar plates supplemented with the
appropriate antibiotic(s) and incubated at 37 °C for 12–16 h. The mutation
rates for experiments were determined using either resistant colony-
forming units (TEM-1 based assay) or through next generation sequencing
(endogenous mutation prevention experiments). All mouse experiments
were performed in accordance with and as approved by the Harvard Medical
School Institutional Animal Care and Use Committee (protocol no. 04957)
and Harvard Medical School Committee on Microbiological Safety (approval
no. 12-085). Detailed protocols are contained within SI Appendix.
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