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Abstract

Artificial intelligence (AI) and machine learning (ML) models are being 
deployed in many domains of society and have recently reached the 
field of drug discovery. Given the increasing prevalence of antimicrobial 
resistance, as well as the challenges intrinsic to antibiotic development, 
there is an urgent need to accelerate the design of new antimicrobial 
therapies. Antimicrobial peptides (AMPs) are therapeutic agents for 
treating bacterial infections, but their translation into the clinic has 
been slow owing to toxicity, poor stability, limited cellular penetration 
and high cost, among other issues. Recent advances in AI and ML have 
led to breakthroughs in our abilities to predict biomolecular properties 
and structures and to generate new molecules. The ML-based modelling 
of peptides may overcome some of the disadvantages associated with 
traditional drug discovery and aid the rapid development and translation 
of AMPs. Here, we provide an introduction to this emerging field and 
survey ML approaches that can be used to address issues currently 
hindering AMP development. We also outline important limitations that 
can be addressed for the broader adoption of AMPs in clinical practice, 
as well as new opportunities in data-driven peptide design.
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drug discovery and development28,41–44, and medical data analysis45,46. 
By using and learning knowledge from publicly available peptides, 
multiple AMPs have been discovered and generated through AI/ML47 
(Boxes 1–3), which have been experimentally validated to be effective at 
targeting bacteria14,15,48–50 (Table 1, Fig. 1). We anticipate that substantial 
progress will be made on ML-based AMP design in the next few years, 
and this progress will help to reduce the time and cost associated with 
AMP discovery and development. In this Review, we survey how ML has 
been applied to various aspects of AMP design, discuss the limitations 
of these approaches and suggest future AI/ML-enabled strategies.

Representations of peptides in ML
Properly selecting an input representation (also known as features) 
for any ML model is a crucial step before model building and train-
ing. Input representations should contain information relevant to the 
properties being modelled; such information helps the ML model to 
capture the corresponding input–output relationship accurately and 
improves model quality. Various types of representations, including the 
ones described below (Fig. 2), can be used to computationally encode 
peptide information:

Global descriptors (0D)
The input representation is typically a fixed-size vector, whose values 
summarize general (‘global’) properties of the corresponding peptide. 
These properties might include sequence composition (such as amino 
acid composition and substring frequency), structural features (such 
as α-helix and β-sheet arrangements) and physicochemical properties 
(such as net charge, hydrophobicity and amphiphilicity)51. Although 
the design of global descriptors for peptides and proteins has been 
extensively studied52–57, directly using all available descriptors could 
easily result in high-dimensional vector representations containing 
irrelevant or redundant information with respect to the properties 
being modelled. This can increase the models’ complexity, bias them 
to capture spurious correlations between the input and output, and 
in turn decrease their generalization ability. To address the issue of 
properly selecting global descriptors, feature-selection algorithms58 
can be used to generate low-dimensional representations that may 
be better suited for ML models in both supervised and unsupervised 
approaches. Overall, although constructing global descriptors 
requires substantial human effort and domain knowledge, this type 
of representation can be useful for capturing specific information 
relevant to the property being modelled when only a limited amount 
of training data is available.

Sequence-based representations (1D)
This input representation type captures primary amino acid sequences. 
Given a peptide sequence of length L, an n × L matrix is used to store 
the sequential information of the peptide sequence, where n is the 
number of features of each letter (that is, amino acid). Here, the infor-
mation of the ith amino acid in the peptide is encoded by the ith column 
(an n-dimensional vector) of the matrix; equivalently, this representa-
tion can be viewed as encoding an amino acid using a string of length L.  
A naïve way to generate these n-dimensional vectors so that each 
amino acid can be uniquely represented is one-hot encoding59. In this  
encoding scheme, the dimension n reflects the size of the sequence 
alphabet (that is, possible characters in sequences of interest). For the 
jth amino acid type in the alphabet, the one-hot encoding representa-
tion is a vector containing a value of 1 at the jth position and n − 1 values 
of 0 at all the other positions. Although the alphabet size n is usually 

Key points

 • Machine learning (ML) can aid antimicrobial peptide (AMP) design 
and discovery. It can be applied to improve drug efficacy, predict 
medicinal chemistry and reduce the overall time and cost of drug 
development.

 • ML can be used for the prediction of therapeutic properties — such 
as antimicrobial efficacy, and absorption, distribution, metabolism, 
excretion and toxicity (ADMET) — and macromolecular structures.

 • Deep generative models are promising approaches to designing 
new AMPs.

 • Important limitations in AMP development include lack of selectivity, 
undesirable physicochemical and medicinal chemistry properties, 
unspecific or unknown mechanisms of action, high cost of peptide 
synthesis, and generation of industrial waste. ML can help to overcome 
these limitations by applying relevant models trained on high-quality 
datasets.

Introduction
Antimicrobial peptides (AMPs) are short amino acid sequences (typi-
cally ranging from 6 to 50 residues in length) that kill various bacteria, 
viruses and fungi through membrane disruption, specific target bind-
ing, immunomodulation, anti-biofilm activity and interference with 
metabolic processes1–3. Although the discovery of AMPs dates back 
to the 1940s4 and over 5,000 AMPs have been identified so far5, fewer 
than 50 AMPs6 have been approved by the US Food and Drug Admin-
istration (FDA) or are under clinical investigation6,7. The development 
of AMPs as therapeutic drugs to treat infectious diseases continues 
to be hindered by undesirable physicochemical and medicinal chem-
istry properties (such as high toxicity and poor chemical stability), 
unspecific or unknown mechanisms of action, the high cost of peptide 
synthesis, and the generation of more industrial waste than produced 
by the manufacture of other therapeutic modalities. Yet, antimicrobial 
resistance remains a major health threat, accounting for more than 
35,000 deaths in the United States per year8 and over 1.27 million deaths 
globally per year9. Because the mechanisms of action of AMPs can differ 
from those of conventional antibiotics, these peptides remain a promis-
ing source of therapeutic agents against antimicrobial resistance and 
disease-causing pathogens.

Bringing new AMP drugs to the clinic requires computational 
platforms that can quickly and accurately identify peptides with 
antimicrobial activity10–17. Such peptides may be mined from nature 
or from extinct organisms, or generated synthetically. Molecular 
dynamics (MD) has been used to design AMPs18,19, but it remains a 
time-consuming and low-throughput approach. In the past few years, 
machine learning (ML), a subfield of artificial intelligence (AI), has 
been successfully and widely applied to problems in computational 
biology, language processing, games and computer vision13,20–34. Some 
ML models make use of deep learning (DL), which applies a series of 
complex transformations (implemented using deep neural networks, 
DNNs) to extract hidden features and make predictions from com-
plex inputs and model data, including images and biomolecules. In 
computational biology, ML (and especially DL) has been widely used 
in genomic studies35–38, structural modelling of biomolecules20,39,40, 
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set to 20 when standard amino acids are considered, the alphabet size 
could be increased to encode non-canonical or chemically modified 
amino acids. One drawback of using one-hot encoding with the amino 
acid alphabet is that no additional information about the properties 
of the amino acids, such as physical or chemical properties, can be 
encoded or represented. This limitation can be addressed by using 
computationally or experimentally determined physicochemical, 
biochemical, and evolutionary features of amino acids60 to replace 
one-hot encoding. In DL, the n-dimensional vector (or ‘embedding’) 
for each amino acid can be learned in a data-driven manner61, such 
that the vector is learned simultaneously as the downstream DNNs per-
form training operations. Provided that the training data are adequate, 
the representation can be optimized for the task of interest. Overall, 
sequence-based representations are suitable inputs for ML models that 
are designed to handle and process sequential data, such as recurrent 
neural networks62,63. This type of representation has been widely used 
for peptide sequence generation64 and property prediction59.

Graph-based representations (2D)
In graph-based representations, the inputs are graphs consisting of 
nodes and node connectivities (‘edges’). To represent peptides, nodes 
can be atoms or residues, and edges can be chemical bonds or the geo-
metric distance between atoms or residues. Nodes and edges can be 
further encoded using one-hot encodings of atom, residue or bond 
types, geometric features (such as dihedral and torsion angles) and 
other embeddings. Compared with sequence-based representations, 
graph-based representations are better inputs for geometry-related 
ML tasks because they capture connectivity information. Graph neural 
networks are types of ML models that use graph representations; such 
models have been applied to various geometry-related tasks, including 
protein structure prediction20,39,40, structure-based AMP prediction65, 

molecular conformation generation66 and antibody design67. How-
ever, as they capture more connectivity information, graph repre-
sentations are often more memory-consuming than sequence-based 
representations, and thus are more computationally costly.

Three-dimensional (3D) representations
In addition to using graph-based representations, peptides with avail-
able 3D structures can be represented using voxelization. Specifically, 
the 3D structure of a peptide can be considered as a 3D image and dis-
cretized into fixed-size voxels (for example each with a size of 1 × 1 × 1 Å). 
For each voxel, a vector storing the occupancies, types and properties 
of the atoms inside the voxel can be used as features. Three-dimensional 
convolutional neural networks68,69 can be used to process the voxelized 
structures and have been applied to protein binding site prediction70, 
protein–ligand binding affinity prediction71, and other prediction tasks.

Data-driven representations
Feature or representation learning72, which automatically learns 
features from data, allows for another type of input representation 
for peptides. State-of-the-art representation learning methods have 
leveraged the concept of self-supervision — learning ‘supervision 
signals’, or labels, from the input data itself, which are then used to 
make sense of the remaining unlabelled data. These methods have 
demonstrated strong predictive ability in computer vision73, natural 
language processing21,74,75 and computational biology39,76–79. Specifically, 
amino acid and protein features learned from protein neural language 
models39,76,77 trained on large-scale protein sequences have shown 
strong predictive power on tasks such as predicting protein structure, 
stability and function after introducing mutations. Peptides and their 
amino acids can be directly represented using the features extracted 
from these language models. Moreover, these features and models 

Box 1

Experimentation and data generation and curation for peptides
Antimicrobial activity is typically identified phenotypically by 
using in vitro screens: that is, antimicrobial agents are determined 
by their abilities to inhibit the growth of, or kill, whole microbial 
cells in culture. A common method of quantifying antimicrobial 
activity is by performing microwell serial dilutions of the agent in 
growth-permissive media in the presence of an inoculum of microbial 
culture in each well. After a standard incubation period (for example, 
overnight for many bacterial cultures), the minimum inhibitory 
concentration (MIC) is determined as the minimum concentration 
at which there is no growth of the microbial culture.

To maximize the number of antimicrobial peptides (AMPs) 
assessed, screening campaigns may screen at a single AMP 
concentration for growth-inhibitory activity. The appropriate 
screening concentration can vary depending on the nature of the 
AMPs screened, the species or strain being targeted, and other 
experimental conditions such as the growth medium and temperature 
used. Given the MICs of previously identified AMPs (Table 1), final 
screening concentrations of 50–100 µM may be appropriate for 
most initial screens.

For other properties, peptide activity can often be determined 
analogously; for example, the haemolytic activity of a peptide can 
be determined by replacing microbial cells with red blood cells 
and measuring percentage red blood cell lysis (through changes 
in optical density) instead of microbial growth.

Numerous databases containing AMPs and other peptides 
are available, including the PDB86 (protein structures), UniProt178 
(protein functions), SwissProt140 (expertly curated UniProt), 
TrEMBL140 (corresponding to translation of all coding sequences 
in the EMBL database), DBAASP (AMPs)100, CAMP103 (AMPs), 
LAMP104 (relations between AMPs), APD3106 (AMPs) and Hemolytik123 
(haemolysis data).

As experimental conditions and organisms differ between studies 
and screens, data from the above sources can be variable and 
non-standardized. The generation of standardized datasets — for 
example those obtained by running library screens in-house — will be 
important for proper data quality control, which is paramount for ML 
model training and benchmarking.
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could serve as initial representations for downstream peptide-related 
tasks and be fine-tuned based on available peptide data.

ML for antimicrobial peptide design
Structural predictions
Knowledge of protein and peptide secondary and 3D structures can 
help to elucidate function and guide the design of new proteins and 
peptides with specified functions and properties. Predicting these 
structures from the primary sequences of amino acids has been a 
central and longstanding goal in computational biology and bioin-
formatics. Although early studies80–82 have aimed to predict peptide 
secondary structure, more recent studies using ML to predict 3D pro-
tein structures have reported exciting advances that can inform AMP 
development in the near future. In particular, AlphaFold2 (ref. 20) and 
RoseTTAFold40 are two platforms for sequence-to-3D structure pre-
diction that have demonstrated outstanding accuracy on benchmark 
sets including CASP14 (ref. 83) and CAMEO84. These platforms use 
attention network architectures85 (a type of DNN) and co-evolutionary 
information from multiple sequence alignments (MSAs) to predict 
3D structures on the basis of known 3D structures in the Protein Data 
Bank86 (PDB). Recent platforms, including ESMFold87 and OmegaFold39, 
have replaced these MSA-based features with features learned from a 
neural language model (Fig. 3a), achieving prediction accuracy similar 
to those of AlphaFold and RoseTTAFold.

Although these sequence-to-structure platforms were not specifi-
cally designed for short protein sequences (that is, peptides), a recent 
comparison88 of peptide structure prediction methods showed that 

these DL-based methods could still achieve the best prediction perfor-
mance. Especially for α-helical, β-hairpin and disulfide-rich peptides 
that have increased residue contact and are less solvent-exposed than 
other peptides (which may result in less conformational flexibility), 
DL-based methods outperform peptide-specific structure predic-
tion methods such as PEP-FOLD3 (ref. 89) and APPTEST90. Using pre-
dicted peptide structures for mechanism of action studies based on 
MD simulations, or as input features for ML approaches that model 
peptides (such as AMP prediction), is promising for structure-guided 
AMP91,92 design. Transfer learning strategies that take models or 
model-predicted structures and perform fine-tuning (or retrain-
ing) based on smaller peptide structures could also improve predic-
tion accuracy for peptides. Extending these sequence-to-structure 
platforms for chemically modified proteins and peptides remains a 
challenge to be addressed.

However, accurately identifying the mechanisms of action of 
small-molecule antimicrobials based on protein structures remains 
a challenge, and improvements in platforms like molecular docking 
are needed to better predict protein–ligand interactions93. Using 
static and rigid protein structures — which are typically produced 
by sequence-to-structure models — may also be limiting. A single 
predicted structure (or conformation) may not sufficiently represent 
a given peptide because of the peptide’s conformational flexibility. 
In such cases, ML-based predictions could be made more accurate 
and interpretable by representing the peptide using a set of confor-
mations and allowing models to select the most relevant conforma-
tions in a data-driven manner. Generative models66,94–97 and models 

Box 2

General process of machine learning
Machine learning (ML) aims to model input–output relationships to 
perform tasks. For any task to be modelled using ML, it is necessary 
first to specify the inputs and outputs. The task of predicting a peptide’s 
antimicrobial activity may, for example, have a peptide sequence as 
an input and the probability that, at a given concentration, the peptide 
described by the sequence inhibits the growth of a particular bacterial 
species as an output.

ML is a data-driven approach — how an ML model maps the input 
to the output is learned from the training data. Thus, the second 
step of developing an ML model is to curate task-related data. For 
example, in the above example of AMP activity prediction, pairs of 
data points (peptide sequence plus corresponding experimental 
antimicrobial activity value) curated from public databases or 
produced by experimental measurements can form a dataset with 
which the ML model can be trained.

ML model training involves feeding the dataset inputs to 
the model and obtaining the model’s predicted output values. The 
predicted outputs are then quantitatively compared with the actual 
outputs from the training dataset using a loss function. For any pair 
of predicted and actual outputs, the loss function returns a value 
measuring how close the predicted output is to the actual output. 
Larger values correspond to worse predictions. An optimization 
algorithm is then applied to adjust the parameters of the ML model 

to minimize the loss value. This training procedure is repeated several 
times until a stop criterion, for example a particular loss value, is met.

For evaluation, predicted outputs are once again generated by 
passing inputs from the dataset to the ML model. Metric functions are 
then used to compare the predicted and actual outputs, returning 
quantitative values (such as accuracy and Pearson correlation 
coefficient) that indicate how well the ML model performs. The metric 
function is not necessarily identical to the loss function.

Although ML models are trained on existing data, a goal of 
most models is to be able to generalize to new inputs. Therefore, 
computationally evaluating how well a trained ML model makes 
predictions requires a separate dataset containing data points that 
have not been seen by the ML model. In practice, the starting dataset 
is commonly divided into training, validation and test sets, and only 
the training dataset is used for model training.

There can be multiple ML models exhibiting good performance, 
and each model may be parameterized by hyperparameters, which 
describe model properties (such as depth of a neural network) that 
should be set before training. In practice, various ML models are 
evaluated on the validation dataset, and the best-performing ML 
model and its hyperparameters are selected based on the metric 
of interest. The performance of this model is then evaluated on the 
withheld test set and reported.
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leveraging reinforcement learning98 have contributed to predicting 
3D conformations for small molecules. Here, the 2D or 3D structure 
of the molecule is provided as inputs, and possible 3D conformations 
are produced as outputs.

MD simulations have also helped to generate conformational 
data for larger molecules, such as peptides and proteins; however, 
MD simulations are time-intensive and computationally expensive. 
Nonetheless, ML-driven approaches that complement MD simulations 
have helped to generate useful conformational data. For example, 
idpGAN99 simulated the conformations of 1,966 and 31 intrinsically 
disordered proteins for model training and testing, respectively. Based 
on this modelling, a conditional generative adversarial network (GAN) 
was developed. This model accepted both a random vector and the 
amino acid sequence of an intrinsically disordered protein as input, 
and produced a conformation of the protein as output. Standardized 
datasets will help to better predict protein and peptide conforma-
tions. Of note, DBAASP100, an AMP database containing ~200 peptides 
for which PDB structures and MD trajectories are available, could be 
used as a dataset for training and evaluating ML-based models. Accu-
mulating and publicly sharing more data on peptide conformations 
will better enable us to use ML models to predict AMP conformations 
and structures.

Property prediction
ML models have been developed to predict properties that inform AMP 
discovery and development, including antimicrobial activity, toxicity, 
stability, cell penetration and mechanism of action, as highlighted 
below.

Antimicrobial activity. ML-based approaches51,101,102 trained and evalu-
ated on public AMP databases100,103–106 have predicted antimicrobial 
activity from amino acid sequences, a key step in AMP development. 
These strategies used simple ML methods (such as random forests and 
support vector machines)49,107–114, DL-based methods14,115,116, and hybrid 
methods combining simple and DL-based models15,117. However, these 
studies differed in the input representations used in each model, how 
AMPs with and without antimicrobial activity were classified, and 
how predictions were evaluated, making it difficult to conclude which 
features and ML models performed best. As feature selection and the 
classification of training data into positives and negatives greatly affect 
ML models51,101,102, these tasks should be benchmarked appropriately 
to make fair comparisons between models. Generating standardized 
datasets is also important for improving data quality, as public AMP 
databases often aggregate data from different experimental conditions 
and organisms (Box 1).

Despite these limitations, some of these models have been applied 
to mine AMPs from large amino acid sequence spaces, and several 
predictions have been validated through wet-lab experiments. For 
example, Deep-AmPEP30 (ref. 115) used convolutional neural networks 
to discover AMPs from the genome of Candida glabrata, a commensal 
fungus in humans, and identified a peptide with potent antimicrobial 
activity in vitro against Bacillus subtilis and Vibrio parahaemolyticus. 
By training DNNs with different architectures, including recurrent 
neural networks and attention networks, and by applying the trained 
DNNs to small open-reading frames in metagenomes from the human 
gut microbiome, a study validated the activity of 11 peptides against 
multidrug-resistant Gram-negative pathogens and found that three of 
these peptides were effective in treating a mouse model of Klebsiella 
pneumoniae infection14. Moreover, an AMP scoring function that 

considers net charge, hydrophobicity and sequence length to iden-
tify encrypted peptides embedded in the human proteome revealed 
active encrypted peptides against Pseudomonas aeruginosa and 
Acinetobacter baumannii infections, which were validated in mouse 
models49.

These studies demonstrate that genetic and proteomic sequences 
from various organisms represent a source of naturally occurring AMPs 
and encrypted peptides. These AMPs may possess useful absorption, 
distribution, metabolism, excretion and toxicity (ADMET) properties. 
Thus, mining functional peptides for therapeutic applications from 
these search spaces is a promising field10,11,16. ML approaches have also 
been used for molecular de-extinction, whereby the proteomes of our 
closest relatives, the archaic humans Neanderthals and Denisovans, 
were mined, and several encrypted peptide antibiotics were resur-
rected which displayed antimicrobial activity in vitro and in preclinical 
mouse models12. Moreover, a deep learning algorithm, called APEX, 
has been recently used to mine the proteomes of all extinct organisms 

Box 3

Categories of machine learning
Machine learning (ML) can be divided into supervised, unsupervised 
and reinforcement learning. In supervised learning, the outputs 
are labels that are associated with the inputs. The antimicrobial 
peptide (AMP) activity prediction in Box 2 is an example of 
supervised learning. In supervised learning, classification 
means predicting which category the input belongs to. 
For example, predicting whether a peptide is antimicrobial 
or not is a binary classification task. Predicting a continuous 
value (such as the minimum inhibitory concentration (MIC) value) 
from the input is referred to as regression.

Unsupervised learning involves discerning patterns in the inputs 
without label information. Typical applications of unsupervised 
learning include clustering (grouping inputs into several clusters, 
so that similar inputs are in the same cluster), representation learning 
(learning features from raw inputs) and generative models (Fig. 3). 
As some representation learning and generative models use inputs 
themselves as labels and aim to generate outputs that resemble 
inputs, these models can also be referred to as self-supervised 
learning models or self-supervision models.

Reinforcement learning (RL) can be described by scenarios 
in which an agent in an environment performs some action and 
receives corresponding continuous feedback (also known as 
reward) from the environment. Based on the reward, the agent 
dynamically adjusts its action to maximize its future reward. 
In the context of AMP sequence generation, the agent may be an 
ML model that generates an AMP-like sequence for each action. 
The reward may be the predicted, or experimentally determined, 
antimicrobial activity of the generated sequence. At the next step, 
the agent considers the generated sequence and the associated 
reward as inputs and uses this information to generate another 
AMP-like sequence. In this process, the ML model becomes 
trained such that the generated peptide sequences are expected 
to gradually have more desirable activity values (for example, the 
generated sequences have decreasing MIC values).
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(the ‘extinctome’) as a source of antibiotics, yielding preclinical anti-
biotic candidates derived from ancient organisms such as the woolly 
mammoth (for example, the molecule mammuthusin-2), the ancient 

sea cow, giant sloth and the extinct giant elk16. These studies revealed a 
new sequence space and opened new avenues for antibiotic discovery 
through molecular de-extinction.

Table 1 | Examples of machine learning/artificial intelligence (ML/AI)-based antimicrobial peptide design and discovery

Ref. Method Number of 
validated 
AMPs in vitro/
in mice

Antimicrobial 
activity range

Studied bacteria Toxicity range

Yoshida 
et al.164

GA with ML 44/N.T. <4.1 μM (IC50) Escherichia coli <1% RBC lysis at antimicrobial IC50 
for the most potent peptide

Nagarajan 
et al.174

Deep generative model 
(neural language model)

10/1 ≤128 μg ml−1 (MIC) 30 pathogens and commensals (carbapenem-
resistant Acinetobacter baumannii for the mouse 
model)

LD50 ~213–224 μg g−1 in mice, no 
hepatotoxicity or nephrotoxicity

Porto 
et al.50

GA 8/1 6.25–100 μg ml−1 
(MIC)

E. coli, A. baumannii, Staphylococcus 
aureus, Pseudomonas aeruginosa, Klebsiella 
pneumoniae, Streptococcus pyogenes, Listeria 
ivanovii and Enterococcus faecalis (P. aeruginosa 
for the mouse model)

Haemolysis HC50 and cytotoxicity 
CC50 in human erythrocytes and 
HEK-293 cells both >200 μM for 
the most potent peptide

Dean 
et al.176

Deep generative model 
(VAE)

6/N.T. <70 μg ml−1 (IC50) E. coli, A. baumannii and S. aureus N.T.

Tucs 
et al.180

Deep generative model 
(GAN)

5/N.T. 3.1–50 μg ml−1 
(MIC)

E. coli N.T.

Das et al.48 Deep generative model 
(VAE) with MD

2/2 (toxicity 
tests only)

7.8–128 μg ml−1 
(MIC)

E. coli, A. baumannii, S. aureus, P. aeruginosa and 
K. pneumoniae

125–500 μg ml−1 (HC50)
158–182 mg kg−1 (LD50 in mice)

Boone 
et al.165

GA with ML 1/N.T. 1.2-cm inhibition 
zone at 4 mg ml−1

Staphylococcus epidermidis N.T.

Capecchi 
et al.126

Deep generative model 
(neural language model)

8/N.T. ≤64 μg ml−1 (MIC) E. coli, A. baumannii, S. aureus, P. aeruginosa, 
Stenotrophomonas maltophilia, Enterobacter 
cloacae, Burkholderia cenocepacia and 
S. epidermidis

≥500 μg ml−1 (minimum haemolytic 
concentration by visual inspection)

Dean 
et al.177

Deep generative model 
(VAE)

38/N.T. 0.5–128 μM (MIC) E. coli, S. aureus and P. aeruginosa N.T.

Torres 
et al.49

AMP predictor using 
physicochemical 
properties
Peptide source: human 
proteome

47/2 ≤64 μM (MIC) 25 pathogens and commensals (P. aeruginosa 
and A. baumannii for the mouse models)

No significant weight change 
in mice

Ma et al.14 DL-based AMP predictors
Peptide source: human 
gut microbiome

181/3 181 peptides 
had significant 
reduction in 
OD600, at 60 μM, 
2–200 μM (MIC) 
for 11 peptides

E. coli, A. baumannii, S. aureus, P. aeruginosa, 
E. cloacae, K. pneumoniae, S. epidermidis and 
E. faecalis (K. pneumoniae for the mouse model)

>61 μM (HC50), 22–200 μM (CC50 
in HCT116 cells and human 
erythrocytes) for three effective 
peptides in mice

Huang 
et al.15

Simple and DL-based
AMP predictorsPeptide 
source: six to nine amino 
acids

54/3 ≤200 μg ml−1 
(MIC)

S. aureus, E. coli, P. aeruginosa, S. haemolyticus 
and A. baumannii (S. aureus for the mouse model)

>750 μg ml−1 (HC50) >300 μg ml−1 
(CC50 in NIH 3T3 cells) for three 
effective peptides in mice

Cao et al.182 Deep generative model 
(GAN) with MD

1/N.T. 16–256 μg ml−1 
(MIC)

Bacillus subtilis, S. maltophilia, P. aeruginosa, 
Bacillus thuringiensis, S. aureus, E. coli and 
Lysobacter enzymogenes

N.T.

Maasch 
et al.12

Simple and DL-based AMP 
and protein cleavage site 
predictors
Peptide source: 
Neanderthal and 
Denisovan proteomes

6/2 ≤128 μM (MIC) E. coli, A. baumannii, S. aureus, P. aeruginosa, 
K. pneumoniae and S. aureus (P. aeruginosa and 
A. baumannii for the mouse models)

No significant weight change 
in mice

Works using ML/AI techniques to discover or design AMPs, validated using in vitro assays or mouse models. The basic methodology, bacteria studied, antimicrobial and toxicity ranges are 
provided. AMP, antimicrobial peptide; CC50, half-maximal cytotoxic concentration; DL, deep learning; EC50, half-maximal effective concentration; GA, genetic algorithm; GAN, generative 
adversarial network; HC50, half-maximal haemolytic concentration; IC50, half-maximal inhibitory concentration; LC50, half-maximal lethal concentration; LD50, half-maximal lethal dose; MD, 
molecular dynamics; MHC, minimum haemolytic concentration; MIC, minimum inhibitory concentration (MICs were determined by broth microdilution); N.T., not tested; OD600, the optical 
density of a sample at a wavelength of 600 nm; RBC, red blood cell; VAE, variational autoencoder.
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Typical ML-based AMP prediction models have formulated the 
problem of AMP prediction as a classification task. Of note, the sequen-
tial model ensemble pipeline (SMEP) proposed in ref. 15 formulated 
this problem according to three criteria (classification, ranking and 
regression) and virtually screened hundreds of billions of sequences 
composed of six to nine amino acids to predict peptides with potent 
antimicrobial activity. The predictions with the highest accuracy were 
achieved by selecting AMPs according to all three criteria, including 
the prediction of peptides as active or inactive (classification), the 
relative antimicrobial activity of peptides (ranking), and the mini-
mum inhibitory concentration (MIC; regression). Of the 55 peptides 
identified in this way, 54 were found to have antimicrobial activity 
in vitro, and three were effective in treating disease in a mouse model 
of bacterial pneumonia15.

Although these studies illustrate how ML-based models have 
been applied to predict the antimicrobial activities of AMPs, most 
ML-based models have not yet taken into account bacterial species- or 
strain-specific information. We expect that extending current ML mod-
els to species- or strain-specific predictions of antimicrobial activity 
will be a focus of future studies, given the large amount of AMP data 
becoming available for various pathogens and commensals. Such 
studies are likely to discover peptides that selectively target patho-
gens without affecting beneficial commensals. Modelling species- or 
strain-specific antimicrobial activity using aggregated AMP data is 
challenging, and metadata recording the experimental conditions 
relevant to the AMPs in the training set may be used as additional inputs 
for ML models to inform species- or strain-specific biases and make 
more reliable predictions.

2018 2019 2020 2021 2022 2023

Turing's learning machine and 
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SNARC, the first NN machine (1951)

The term AI is coined (1955)
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The term ML is coined (1959)
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(1980s)

Popularization of 
backpropagation (1986)

Universal approximation theorem 
(1989) theoretically demonstrates 
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Visual database ImageNet 
releases, allowing training 
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Later, DL trained and 
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performance on various 
vision tasks

ML approach to mine 
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developed14

AMP generation using 
GAN and MD175

Introduction of the 
concept of molecular 
de-extinction11

Mining human gut 
microbiome for AMPs13
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AI/ML-based AMP 
optimization158

Generation of 
non-haemolytic peptides119
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predicted using DL170

First exploration of the 
human proteome as a 
source of antibiotics44

AI/ML-based AMP optimization157

AMP generation via neural 
language model167

Guavanin 2, a new antibiotic 
designed by AI with proved e�icacy 
in a preclinical mouse model is 
discovered45
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protein structure prediction (2018)
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Kasparov in chess (1997)

AMP generation 
using VAE169

AMP generation 
using GAN173
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General ML/AI timeline

Timeline of ML/AI-based AMP design

Fig. 1 | Timelines of major machine learning/artificial intelligence (ML/AI) 
events and recent studies of ML/AI-driven antimicrobial peptide (AMP) 
identification and design. Various ML/AI-driven approaches have been 
developed to discover AMP-like sequences from available genomic or proteomic 
data and to design synthetic AMPs. Here, we highlight several studies in which the 

predictions of ML/AI-driven models were validated in vitro or in mouse models of 
bacterial infection. Details of highlighted AMP studies can be found in Table 1. DL, 
deep learning; GAN, generative adversarial network; MD, molecular dynamics; 
NN, neural network; VAE, variational autoencoder.
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Medicinal chemistry and ADMET. Toxicity and metabolic instability 
are major hurdles for the clinical translation of AMPs, including hae-
motoxicity, cytotoxicity and immunotoxicity, among others118,119. The 
standard haemolysis assay measures the destruction of red blood cells; 
because this assay is cost-effective and sensitive, it has been widely 
used for early toxicity screening119. As limited haemolysis data have 
been available for peptides, previous ML methods have focused 
on using simple classifiers119–122 to predict peptide haemotoxicity. 
Recently, large haemolysis datasets have become available100,123, and 
DL-based124–127 models predicting haemolysis have been developed. 
An example of such a model is AMPDeep127, which uses a two-step 
transfer learning approach for training, whereby a pretrained neural 
language model for proteins is fine-tuned to classify secreted pro-
teins and haemolytic peptides. By combining the knowledge learned 
from a related task (classification of secreted proteins) with large 
sets of training data, AMPDeep obtained state-of-the-art accuracy in 
predicting haemolysis.

Models using simple ML-driven methods, as well as DL-based meth-
ods, have also been developed to predict unspecific cell killing128–132 
and anti-inflammatory133–136 or pro-inflammatory137–139 properties of 
peptides (such as cytotoxicity and immunotoxicity). These models 
typically curate peptides from various databases, including SwissProt 
and TrEMBL140. Although these models have good predictive power 
when validated on splits of the curated data (Matthews correlation 
coefficients ≥0.9), the extent to which they can help to narrow down 
AMP candidates found in large search spaces or generated de novo 
remains unknown. Notably, as with data for antimicrobial activity, 
the toxicity data underlying these models represent different experi-
mental conditions and cell types, and the generation of standardized 
datasets will be important for accurately benchmarking these studies 
and training future models.

To complement predictions of AMP toxicity, the half-life and sta-
bility profiles of peptides have also been predicted141–145. AMPs can be 

particularly susceptible to metabolic or enzyme-catalysed breakdown, 
resulting in poor bioavailability2. Previous ML models, including those 
based on support vector machines and linear regression, have pre-
dicted AMP stability from sequence and/or structural information144,145. 
For example, using small datasets reporting the stability properties 
of ~100 and ~260 peptides revealed that the best-performing models 
(including support vector machine and K-nearest neighbour) had char-
acteristic values of ~0.7 for accuracy and the Pearson’s correlation coef-
ficient, respectively. The ML-driven approaches used in these studies 
are promising and can probably be improved by including more data. 
Moreover, additional ML model architectures beyond the simple ones 
used in these examples should be explored to improve performance, 
given these larger datasets.

To summarize, ML-guided predictions of AMP toxicity and chemi-
cal stability have generally not been as well studied as those for antimi-
crobial activity, probably owing to the limited training data available 
for these tasks. Although additional experimental efforts to generate 
these data should be undertaken, ML approaches that make better use 
of the available data can also help to improve model performance. For 
example, multitask learning (which jointly trains models to perform 
multiple related tasks) or transfer learning (which fine-tunes ML mod-
els pretrained on related tasks) could be used to augment ML models. 
Aside from haemotoxicity, cytotoxicity and immunotoxicity, AMPs may 
exhibit other forms of toxicity (such as genotoxicity), and additional 
data and models are needed to improve our understanding of these 
important liabilities.

Cell penetration. Delivery remains a central challenge for AMP devel-
opment. A bacterial infection may be intracellular, and in such cases 
AMPs must enter mammalian cells to treat the infection. Thus, in addi-
tion to selecting the proper formulation and route of administration, 
validating that AMPs can enter mammalian cells is important for pep-
tides that target intracellular infections146,147. Cell-penetrating peptides 

a Global descriptors b Sequence-based 
     representation

c Graph-based 
      representation

d 3D representation e Data-driven representation

• Sequence composition
• Structural features
• Physicochemical 

properties

K T L K

ML model
Amino acid or
peptide features

Fig. 2 | Methods of representing peptides as inputs to machine learning 
models. a, For any peptide, global descriptors use fixed-size vectors to encode 
peptide information such as sequence composition, structural features and 
physicochemical properties. b, A sequence-based representation encodes 
a peptide using data from its primary sequence of amino acids. Each type of 
amino acid is associated with a fixed-size vector encoding the corresponding 
residue information (such as amino acid type and physicochemical properties). 
These vectors, or ‘embeddings’, can also be learned from data. c, A graph-based 
representation consists of nodes and edges. To represent peptides, the nodes 
can be atoms or residues, whereas the edges can be bonds or geometric distance 

(given a 3D structure of the peptide) between nodes. Nodes and edges are 
associated with corresponding vectors representing atom, bond and geometric 
information. d, When the 3D structure of a peptide is available, the peptide 
can also be represented by a voxelized (or discretized) form of the structure. 
Each voxel is represented by a vector, which stores information regarding atom 
occupancies and atom properties relevant to that voxel. e, Machine learning (ML) 
models can be used to extract low-dimensional features from peptide inputs 
from sequence or structure. The extracted features can be used as inputs for 
other peptide-related tasks.
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(CPPs), short amino acid sequences that can translocate a variety 
of biomolecules across cellular membranes, have been used for the 
delivery of drugs across cellular membranes to reach their targets. 
Antimicrobial or antineoplastic CPPs may be simultaneously used as 
both vehicles and drugs, and various studies have aimed to predict CPP 
activity148–155. For example, a support vector machine to identify CPPs 
was trained and found four hits predicted to penetrate cells154; this 
activity was then validated using fluorescence microscopy and quan-
titative uptake measurements. Similarly, a random forest model was 
trained to identify CPPs from random peptide sequences to generate  
and classify CPPs for the delivery of phosphorodiamidate morpholino 
oligonucleotides (PMOs)151. Another example involved training a neu-
ral language model to generate CPP-like sequences and a DL-based 
model to predict PMO delivery efficacy, and then applying genetic 
algorithms to optimize the generated CPP-like sequences based on 
predictions of PMO delivery efficacy148. The predictions made in these 
two studies were experimentally validated in vitro and in a mouse 
model, respectively, and offer promising proofs-of-concept for 
ML-driven models that predict cell penetration by peptides.

Mechanisms of action. Many AMPs are membrane-active, which may 
lead to collateral toxicity against human cells and unspecific activity 
against bacterial cells. MD simulations have helped to identify the 
mechanism of action of membrane-active AMPs48, but predicting 
additional mechanisms of action remains a challenge, in part because 
platforms modelling the binding of these peptides to intracellular 
targets have low predictive power. For protein targets, platforms that 
make binding predictions have made use of peptide and target 3D 
structure156. Combining these approaches with sequence-to-struc-
ture prediction pipelines might hold promise, but molecular dock-
ing with AlphaFold2-predicted structures cannot accurately identify 
the protein binding targets of small-molecule antimicrobials, prob-
ably owing to limitations in predicting binding pockets and model-
ling conformational complexity93. Recent models have used ML to 
predict peptide–protein interactions and peptide–protein binding 
residues independently of molecular docking156–160. For example, 
a DL framework, CAMP, was developed to predict binary peptide–
protein interactions and identify peptide-binding residues, outper-
forming molecular-docking-based methods156. Notably, CAMP was 

a  Neural language model

d  Generative adversarial network e  Di�usion model

b  Variational autoencoder

K ? L ? I K T L K I K T L K I Z K T L K I

K T L ? ? K T L K I

K T L K I

K T L K I

R T L K K

Reconstruct missing 
amino acids

Predict subsequent 
amino acid sequence

Latent
codes

Reconstructed
peptide

R T L K K

Random noise Generated
peptide

Real or
fake?

c  Normalizing flow

K T L K I Z K T L K I

Latent
codes

...
X0 X1 XT (random noise)

Reconstructed
peptide

Neural
network

Encoder

Flow

Recoder

Generator

Inverse
flow

Neural
network

Discriminator

Fig. 3 | Schematic illustration of deep generative models for antimicrobial 
peptides (AMPs). a, In neural language models, sections of the input (such 
as certain letters in an input sequence) are missing and the model (often a 
deep neural network, DNN) is asked to reconstruct the missing parts from 
the incomplete input. After training, partial inputs are fed into the model 
to generate new peptides. b, A variational autoencoder (VAE) consists of 
an encoder and a decoder neural network. The encoder maps the input to a 
low-dimensional embedding, Z (a vector), which follows some distribution. 
The decoder then processes the embedding and reconstructs the original input. 
As the embeddings fall into some probability distribution, new peptides can 
be generated by decoding embeddings that are sampled from the distribution. 
c, Normalizing flow models are similar to VAEs, with the exception that the 
encoder neural network is specified to be dimension-preserving and invertible 

(hence, the corresponding decoder is the inverse function of the encoder). This 
makes normalizing flow models capable of inferring exact likelihoods of data. 
d, A generative adversarial network (GAN) consists of a generator that creates 
a synthetic peptide from a random vector and a discriminator that aims to 
identify whether the generated peptide comes from actual data or is synthetic. 
Because the discriminator and the generator compete with each other, the 
synthetic peptides produced by the generator will converge to approximate 
the peptides found in actual data. e, Given any input (X0), diffusion models 
gradually add Gaussian noise to the input. Sufficient noise addition transforms 
the input to random Gaussian noise, XT. A DNN is then trained using data to 
reverse-transform the random noise, XT, back to the original input (from XT 
to X0). This reverse step specifies the process of how new peptides are generated 
from random noise.
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benchmarked using several independent datasets, including the ones 
derived from the PDB and PepBDB, suggesting that the framework 
might be broadly applied to predict AMP binding targets and guide AMP 
selection. We anticipate that similar ML- and DL-guided approaches 
will complement other methods, such as molecular docking, for pre-
dicting peptide–protein interactions. Predictive, next-generation 
platforms that can accurately predict AMP–protein interactions will 
enable the selection and design of AMPs that have pre-specified targets 
and favourable mechanisms of action.

Negative data selection for training property predictors. In a 
supervised learning framework (Box 3), peptides with and without 
the property of interest should be provided to train ML models. For 
classification models, negative data (that is, peptides without the 
property of interest) should be included in the training set to prevent 
ML classifiers from minimizing the loss and metric functions (Box 2) 
by trivially predicting any sample to be positive during and after 
model training, respectively. Similarly, regression models should be 
trained to predict different bioactivity values for inactive samples than 
for active samples. In general, the selection of negative data greatly 
affects ML model training and the performance of the resulting trained 
models102. Although researchers have often included unlabelled sam-
ples as negative data (for example, previous work14,15 included peptides 
without certain keywords related to ‘antimicrobial’ from UniProt as 
negative data), false negatives may exist owing to the lack of experi-
mental validation. These false negatives may mislead ML models that 
are trained on them.

Several strategies can help to improve the selection of negative 
data. First, based on the intuition that similar samples may have similar 
properties of interest, unlabelled samples that are highly similar to 
positive samples may be filtered out. Similarity can be measured based 
on feature representation or calculated from sequence or structure 
alignment. Second, clustering (Box 3) may be performed based on the 
feature representations of unlabelled samples and subsample data 
as negative samples from each cluster. This strategy can reduce the 
redundancy in the negative data and help to balance the training set 
to include similar numbers of positive and negative samples, which 
is often useful when facing a highly imbalanced dataset and develop-
ing ML models that focus on correctly predicting samples from the 
minority class. Third, label smoothing has been shown to be effective 
at regularizing and improving classification models161. Label smooth-
ing assumes that there is a small probability that the label of a given 
data point is incorrect and prevents classifiers from over-confidently 
predicting the label by creating ‘soft’ labels for ML models to fit. For 
example, negative data points whose original class labels are 0 in a 
binary classification problem may be modified to have higher values 
(such as between 0 and 0.1 or 0.2) as soft labels, and positive data 
points whose original class labels are 1 may have lower values (such as 
between 0.8 or 0.9 and 1) as soft labels. For regression models, learning 
a statistical distribution of target values can similarly enhance gener-
alization ability162. Fourth, one can make use of positive-unlabelled 
learning163, in which the unlabelled data are not all considered as nega-
tive. Techniques for positive-unlabelled learning, including two-step 
techniques, may first define reliably negative samples in the unlabelled 
data based on a criterion (such as dissimilarity to positive samples). 
In the second step, the positive and inferred-negative samples are 
used to train ML models, which are then applied to label the rest of the 
unlabelled samples. The labelled data then make up the final training 
set for downstream ML models.

AMP generation
As opposed to identifying AMPs among existing amino acid sequences, 
new peptides can be generated by modifying or optimizing existing 
peptide sequences and by relying on computational sequence gen-
eration de novo. Various ML/AI methods can be used to modify and 
optimize peptide sequences and graphs (corresponding to 2D or 3D 
peptide structures), including evolutionary and genetic algorithms, 
Bayesian optimization and reinforcement learning. Notably, genetic 
algorithms have been used to optimize AMPs50,164,165; starting from 
an initial population of template peptide sequences, a genetic algo-
rithm expands the population by creating offspring sequences through 
crossover (exchange of subsequences) and mutation (modification 
of subsequences). The antimicrobial potential of each initial and off-
spring sequence is then assessed based on prior human knowledge or 
ML-derived rules. Sequences with poor predicted antimicrobial activity 
are filtered out from the population. By iterating the processes of off-
spring sequence generation and filtering, the antimicrobial potential of 
peptides in the population can be optimized. Using such an evolution-
ary algorithm, AMPs from a glycine-rich guava peptide were designed, 
revealing that guavanin 2, when synthesized and tested, shows potent 
antimicrobial activity in vitro and efficacy against P. aeruginosa in a 
mouse infection model50.

To complement the modification and optimization steps, genera-
tive models can model the distribution of the training data and pro-
duce data that have properties similar to those of the training dataset. 
Deep generative models, which combine a generative framework with 
powerful DNN architectures, include neural language models21,85, vari-
ational autoencoder (VAE) models166,167, normalizing flow models168, 
GANs169 and diffusion models170–172 (Fig. 3), which have been used to 
generate new AMPs64. Neural language models126,173–175 have largely 
used recurrent neural networks trained to predict the next amino acid 
of an AMP sequence given information on the previous amino acids. 
Although these models were trained using AMP sequences and may 
be expected to generate AMP-like sequences, most of the outputs 
produced126,174,175 required additional filters (such as for physicochemi-
cal properties, ML-predicted antimicrobial activity and ML-predicted 
haemolysis) to rank and filter out inactive or weakly active sequences. 
Using these models, a peptide was generated to be effective for treating 
carbapenem-resistant A. baumannii in a mouse model of infection174, 
and eight new, non-haemolytic AMPs were synthesized with activity 
against multiple-drug-resistant pathogens in vitro126.

As applied to AMPs, VAEs48,176,177 have mapped peptide sequences 
to low-dimensional embeddings that sample statistical distributions. 
New peptide sequences can be generated by sampling and decoding 
embeddings from these distributions. For example, training VAEs on 
AMP sequences to study the latent space formed by the embeddings 
revealed that peptides close to each other in the latent space show 
similar features resulting in the accurate generation of new AMPs176,177. 
Similarly, using a VAE trained on unlabelled peptides from UniProt178, 
a sampling strategy was proposed based on predictors of various prop-
erties (such as antimicrobial activity and toxicity) to generate AMPs48. 
MD simulations were then performed to narrow down AMP candidates, 
and favourable toxicity profiles for two peptides (generated within 
48 days) were validated in mice.

Although known for being difficult to train179 (owing, at least in 
part, to unstable training processes in which either the generator or the 
discriminator outperforms the other and sensitivity to model hyper-
parameters), several GANs180–183 have been developed to generate pep-
tides resembling AMPs. Among them, six GAN-derived peptides180,182 
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have been validated to have antimicrobial activity in vitro. In VAE- and 
GAN-based approaches, models have often formulated AMP generation 
in terms of sequence generation while neglecting geometric informa-
tion from 3D structures and different conformations. Additionally, 
although flow and diffusion models have been used to generate small 
molecules184 and proteins185, their use and efficacy for AMP generation 
remains to be studied.

Notably, introducing peptide structural information as inputs 
into ML models can help to establish sequence–structure–function 
relationships by bridging the gap between raw sequence and func-
tion. Indeed, although all the information that defines a specific pep-
tide is encoded in the peptide’s sequence, properties such as structure 
that depend on nonlocal interactions between, and combinatorial 
subsets of, amino acids may not be sufficiently modelled by simple 
sequence-to-function frameworks. Thus, we expect that approaches 
that model and generate AMP sequences using structural and confor-
mational information can improve our understanding of AMP function 
and mechanisms of action. The peptide sequences generated by any 
such approach will also be iteratively optimized through rounds of 
experimental testing and ML model retraining. This optimization will 
benefit from making use of multi-objective methods that optimize 
multiple criteria and properties.

Lastly, an important consideration for the generation of AMPs 
is synthesizability. Peptide synthesis typically occurs through a step-
wise elongation process in which certain amino acids are coupled 
and protecting groups are removed. Although liquid-phase synthesis 
remains common for large-scale synthesis, most peptides are synthe-
sized using solid-phase technology, in which the first amino acid of a 
growing chain is linked to a solid resin. Downstream peptide purifica-
tion commonly relies on techniques such as high-performance liquid 
chromatography and reverse-phase chromatography, and can result 
in samples that are >98% pure, a standard often used for in vivo studies 
and clinical trials. Nevertheless, peptides that form insoluble aggre-
gates, including those containing a high number of amino acids with 
hydrophobic side chains, remain difficult to synthesize and purify186,187. 
Independently of such ‘difficult sequences’, longer peptides (for exam-
ple longer than 50 amino acids) have been more difficult to synthesize 
and purify than shorter ones owing to the number of sequential reac-
tions that are required to occur; for such peptides, cost and yield are 
often major bottlenecks. In general, the number of intermediates 
generated during peptide synthesis, as well as the various hazardous 
reagents and solvents used (including N,N-dimethylformamide and 
N-methyl-2-pyrrolidone), makes sustainable peptide synthesis difficult, 
with estimates of multiple tonnes of waste being generated for each 
kilogram of produced peptide — as opposed to hundreds of kilograms 
for small-molecule synthesis188. To help to address these issues, com-
putational approaches such as TANGO and AGGRESCAN may be able 
to accurately assess the synthetic accessibility of candidate peptide 
sequences by predicting those that aggregate in solution189,190. Taking 
into account such predictions during the selection and optimization 
of candidate peptides will be essential for promoting efficient and 
cost-effective synthesis.

Moving forward, we anticipate that comprehensive benchmark-
ing will be useful for assessing generative AMP models, allowing us to 
compare models fairly and to optimize AMP design strategies. This 
benchmarking may use standardized datasets and metrics. Specifi-
cally, to benchmark the performance of generative models fairly, 
peptide datasets covering diverse amino acid sequence spaces must 
be compiled. The dataset may be split into a training set (on which all 

generative models will be trained) and a test set for evaluation. A pos-
sible evaluation metric could consist of using the trained generative 
models to generate a number of peptides, then evaluating how many 
test peptides share similar properties to those of the generated ones. To 
evaluate the quality of de novo generated peptides, certain heuristics 
can be followed, including: (1) lack of redundancy in the generated 
sequences; (2) novelty with respect to the training set; and (3) diver-
sity of the generated peptides with respect to the general sequence 
space. Metrics such as the Frechet inception distance191,192 can measure 
novelty by quantifying the distance between generated peptides and 
other peptides with respect to a feature representation space. These 
feature representations are ‘hidden features’ that are derived from 
ML models trained to perform another task (such as antimicrobial 
activity prediction).

Current limitations
Explainable and interpretable AI
Simple ML models (such as linear and tree-based models) offer straight-
forward ways (such as learnt weights and feature importance scores, 
respectively) to explain important features that contribute to model 
predictions. Despite generally being more powerful than these simple 
models, DL models such as neural networks are also more difficult to 
explain, owing to their black-box nature. Various post-hoc explain-
able or interpretable methods34,193–198 have been developed to identify 
important input features for DL models (explainable) or identify the 
components of DL models that are responsible for certain predictions 
(interpretable). However, applying these methods to the identification 
and design of AMPs requires further work. It would be useful for future 
studies to involve collaborations with experimentalists who can exam-
ine whether the important features inferred by explainable approaches 
(such as physicochemical descriptors, amino acid residues or specific 
3D substructures) match expectations. Wet-lab experiments can then 
comprehensively study peptides with or without the inferred features 
to validate their importance.

Quantitative modelling of peptide properties
Many peptide property predictors, including those reviewed above, 
have been used for classification tasks; by definition, this ignores quan-
titative activity values. Without more quantitative (such as regression) 
modelling, ML approaches run the risk of selecting for peptides with 
only weak or moderate property values, such as those for antimicrobial 
activity. Yet peptides that are more potent and selective than others 
are more relevant for translation into clinical use, as they can exert 
their antibacterial effects at lower concentrations without comparable 
toxicity.

Generalizability and uncertainty estimation
To ensure that ML models make reasonable and reliable predictions, the 
test set should be similar to the training set. Although domain adapta-
tion techniques199 can be used to address the problem of domain shift, 
in which the test set differs from the training set, these techniques 
typically require fine-tuning of ML models, and researchers should 
aim to assess the generalizability of the ML models they build. Analy-
ses in which dissimilar samples in the training set (where similarity is 
defined with respect to some property of interest) are withheld from 
training and then examined as test samples can often provide insightful 
information with regards to how well a model generalizes in certain con-
texts. Additionally, property predictors often do not model predictive 
uncertainty (a surrogate for measuring the reliability or confidence of 
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the predictions), but providing relevant statistics (such as confidence 
intervals for prediction scores) can better inform situations in which 
ML models can generalize.

Outlook
ML/AI has been used to tackle key problems relevant to AMP discovery 
and development, including peptide generation, optimization and 
property prediction. Multiple AMPs generated or discovered using 
ML models have been validated to have antibacterial activity in vitro 
and, more recently, in vivo. This validation supports the feasibility and 
promise of ML-guided AMP identification and design. We anticipate 
that, in the coming years, ML will substantially accelerate research and 
development for AMPs, helping scientists and clinicians to combat 
infectious diseases. Below, we highlight three areas for future work: 
data curation and quality; peptide representation and ML model design; 
and ML model evaluation and selection.

Data curation and quality
ML requires accumulating large amounts of high-quality data, both 
labelled and unlabelled, as well as positive and negative examples, for 
model training and evaluation. To predict antimicrobial activity, ML 
models have mainly been trained on data obtained in vitro (such as MIC 
values). Developing predictive in vivo models of infection and curating 
corresponding antimicrobial data for training could accelerate the 
translation of AMPs identified in silico into the clinic. Publicly available 
data on medicinal chemistry properties (such as toxicity and stability), 
although important for AMP development, are scarcer than data on 
antimicrobial activity. Therefore, future studies should aim to generate 
and/or curate medicinal chemistry data in addition to data on important 
functional properties. High-throughput screens that can produce con-
sistent and quantitative data are also needed to enable ML approaches 
to model activity values quantitatively (for example using regression) 
for more properties of interest. For example, in addition to using MIC 
values for regression models that predict antimicrobial activity, meas-
urements of red blood cell half-maximal lethal concentration (LD50) 
values can inform regression models that predict haemolytic potency.

Public datasets containing data on mechanisms of action can also 
help to inform AMP discovery. Deciding whether an AMP should be 
used in combination with other drugs (and whether it may be syner-
gistic) often relies on an understanding of its mechanism of action200. 
MD19 simulations have been widely used to study AMP mechanisms of 
action, but these simulations often focus on a few AMPs of interest or 
on peptide–membrane interactions. The development of ML-based 
prediction platforms will require more training data containing AMPs 
with different (non-membrane) targets, as well as improvements to 
current approaches (such as those using molecular docking) for pre-
dicting protein–ligand interactions93. ML approaches can also help 
to inform combination treatments by directly predicting synergies. 
Notably, DBAASP is a database that contains information on more 
than 600 synergistic interactions for AMPs and other antibiotics, 
representing a useful resource for future ML models to build on100. The 
generation of high-quality data that examine synergies between AMPs, 
small-molecule antibiotics and other antimicrobial drugs will continue 
to enable us to build more robust and accurate models.

Finally, comprehensively leveraging already-available AMP data 
could be a straightforward way to augment ML-driven models. For 
example, although MICs are commonly used to define training labels 
for models predicting antimicrobial activity, additional information 
(such as time needed for bacterial killing and whether the activity is 

bacteriostatic or bactericidal) can provide useful knowledge for improv-
ing model learning. ML models could use this knowledge as supervision 
signals during training, improving predictive power. To aid this, the data 
collected by different groups should be integrated and standardized 
to ensure quality and consistency. Metadata storing the details of how 
data were generated should be properly included with each record, as 
this may help researchers understand biases and limitations of their 
downstream models. When experimental results are reported, both 
positive and negative results should be provided, as negative data points 
can provide useful information to train ML models.

Peptide representation and ML model design
Most ML-based approaches to AMPs have used input peptides contain-
ing only the 20 standard amino acids, and peptides with non-canonical 
(such as d-amino acids) or chemically modified amino acids (such 
as N- and C-terminal and lysine modifications) have typically been 
removed for model training and evaluation. As a result, the trained ML 
models may not generalize to non-standard peptides. Further studies 
should develop and use peptide representations capable of handling 
non-standard amino acids and design ML models compatible with this 
expanded input to improve generality. In addition, 3D structural and 
conformational information has not yet been widely used for ML-driven 
modelling of AMP properties. Recent sequence-to-structure platforms, 
including AlphaFold2 and RoseTTAFold, can help to generate peptide 
structures, and the resulting structural information can then be used to 
augment the prediction of peptide properties. Adopting probabilistic 
approaches to model ML outputs, in addition to providing relevant 
statistics such as confidence information, can enable ML models to 
estimate uncertainty. An active area of research uses physics-informed 
neural networks (PINNs)201–203, which combine neural networks with 
physics-based models, to quickly and accurately approximate com-
plex and time-consuming calculations for MD simulations. It would 
be interesting for future work to consider whether these models can be 
applied to aid in MD-based protein or peptide design204.

ML model evaluation and selection
Benchmarking approaches that use consistent training–validation–test 
sets and comprehensive evaluation metrics are needed to assess the 
performance of ML models trained to perform the same task. Although 
many AMP prediction models have been benchmarked51,101,102, similarly 
rigorous benchmarking (as described above) should be performed for 
models trained to predict properties other than antimicrobial activity 
and for generative models trained to design AMPs. This will aid in select-
ing appropriate tools to use for in silico AMP optimization and design. 
Determining suitable hyperparameters for ML models also remains an 
important problem, and we anticipate that automated ML and neural 
architecture search tools205–207 can be used to select best-performing 
hyperparameters in a data-driven manner.

To conclude, we note that AMP development faces challenges 
beyond those discussed in detail here, including the high cost of pep-
tide synthesis and the generation of industrial waste208. Future work 
can help to address these challenges by finding ways to better discover 
and design AMPs with favourable synthesis properties. We expect that 
ML/AI-guided approaches will continue to accelerate the pace of AMP 
development, leading to urgently needed treatments for infectious 
diseases, improvements in human health and exciting discoveries in 
this nascent field.
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