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Reconstructing gene regulatory networks from high-throughput 
data is a long-standing challenge. Through the Dialogue on 
Reverse Engineering Assessment and Methods (DREAM) project, 
we performed a comprehensive blind assessment of over 30 
network inference methods on Escherichia coli, Staphylococcus 
aureus, Saccharomyces cerevisiae and in silico microarray data. We 
characterize the performance, data requirements and inherent 
biases of different inference approaches, and we provide guidelines 
for algorithm application and development. We observed that no 
single inference method performs optimally across all data sets. 
In contrast, integration of predictions from multiple inference 
methods shows robust and high performance across diverse data 
sets. We thereby constructed high-confidence networks for E. coli 
and S. aureus, each comprising ~1,700 transcriptional interactions 
at a precision of ~50%. We experimentally tested 53 previously 
unobserved regulatory interactions in E. coli, of which 23 (43%) 
were supported. Our results establish community-based methods as 
a powerful and robust tool for the inference of transcriptional gene 
regulatory networks.

‘The wisdom of crowds’ refers to the phenomenon in which the 
collective knowledge of a community is greater than the knowl-
edge of any individual1. Based on this concept, we developed 
a community approach to address one of the long-standing  
challenges in molecular and computational biology, which is to 
uncover and model gene regulatory networks. Genome-scale 
inference of transcriptional gene regulation has become pos-
sible with the advent of high-throughput technologies such as 
microarrays and RNA sequencing, as they provide snapshots of 
the transcriptome under many tested experimental conditions. 
From these data, the challenge is to computationally predict direct 
regulatory interactions between a transcription factor and its tar-
get genes; the aggregate of all predicted interactions comprises 
the gene regulatory network. A wide range of network inference 
methods have been developed to address this challenge, from 
those exclusive to gene-expression data2,3 to methods that inte-
grate multiple classes of data4–7. These approaches have been 
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successfully used to address many biological problems8–11, yet 
when applied to the same data, they can generate disparate sets 
of predicted interactions2,3.

Understanding the advantages and limitations of different network 
inference methods is critical for their effective application in a given 
biological context. The DREAM project is a framework to enable 
such an assessment through standardized performance metrics and  
common benchmarks12 (http://www.the-dream-project.org/). 
DREAM is organized around annual challenges, whereby the com-
munity of network inference experts is solicited to run their algo-
rithms on benchmark data sets, participating teams submit their 
solutions to the challenge and the submissions are evaluated12–14.

Here we present the results for the transcriptional network  
inference challenge from DREAM5, the fifth annual set of DREAM 
systems biology challenges. The community of network infer-
ence experts was invited to infer genome-scale transcriptional 
regulatory networks from gene-expression microarray data sets 
for a prokaryotic model organism (E. coli), a eukaryotic model  
organism (S. cerevisiae), a human pathogen (S. aureus) and an  
in silico benchmark (Fig. 1).

The predictions made from this challenge enabled the com-
prehensive characterization of network inference methods 
across different species and data sets, providing insights into 
method performance, data requirements and inherent biases. 
We found that the performance of inference methods varies, 
with a different method performing best in each setting. Taking 
advantage of variation, we integrated predictions across infer-
ence methods and demonstrated that the resulting community-
based consensus networks are robust across species and data 
sets, achieving the best overall performance by far. Finally, we 
constructed high-confidence consensus networks for E. coli 
and S. aureus and experimentally tested novel regulatory inter-
actions in E. coli.

We make all benchmark data sets and team predictions, along 
with the integrated community predictions, available as a public 
resource (Supplementary Data 1–5). In addition, we provide a web 
interface through the GenePattern genomic-analysis platform15  
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(GP-DREAM, http://dream.broadinstitute.org/), which allows 
researchers to apply top-performing inference methods and con-
struct consensus networks.

RESULTS
Network inference methods
Proceeding from the DREAM5 challenge (Supplementary  
Notes 1–3), we compared 35 individual methods for inference 
of gene regulatory networks: 29 submitted by participants and 
an additional 6 commonly used ‘off-the-shelf ’ tools (Table 1). 
Based on descriptions provided by participants, the methods were 
classified into six categories: regression, mutual information, cor-
relation, Bayesian networks, meta (methods that combine several 
different approaches) and other (methods that do not belong to 
any of the previous categories) (Table 1).

Performance of network inference methods
We used three gold standards for performance evaluation: 
experimentally validated interactions from a curated database 
(RegulonDB16) for E. coli, a high-confidence set of interactions 
supported by genome-wide transcription-factor binding data17 
(ChIP-chip) and evolutionarily conserved binding motifs18 for  
S. cerevisiae, and the known network for the in silico data set 
(Online Methods). We evaluated performance on S. aureus sepa-
rately (see below), as a sufficiently large set of experimentally 
validated interactions currently does not exist.

We assessed method performance for the E. coli, S. cerevisiae 
and in silico data sets using the area under the precision-recall 
(AUPR) and receiver operating characteristic (AUROC) curves14 
as well as an overall score that summarizes the performance across 
the three networks (Online Methods and Supplementary Note 4). 
Figure 2a shows the overall score and the performance on each 
network for all applied inference methods. On average, regula-
tory interactions were recovered more reliably for the in silico and  
E. coli data sets than for S. cerevisiae.

Notably, well-established off-the-shelf inference methods, 
such as CLR (context likelihood of relatedness)11 and ARACNE 
(algorithm for reconstruction of accurate cellular networks)9 
(categorized as mutual information methods 1 and 3), were sub-
stantially outperformed by several teams. The two teams with 
the best overall score used novel inference approaches based on 
Random Forests19 and ANOVA20 (other 1 and 2), respectively 
(Table 1). However, when their performance on individual net-
works was considered, the Random Forest and ANOVA-based 
methods were the best scorers for E. coli only. Two regression 

methods achieved the best AUPR for the in silico bench-
mark (regression 1 and 2), and two meta predictors did so for  
S. cerevisiae (meta 1 and 5).

Performance also varied within each category of inference meth-
ods (Fig. 2a). For example, the overall scores obtained by regres-
sion methods range from the third best of the challenge down to 
the fourth lowest. A similar spread in performance can be observed 
for other categories. We conclude that there is no category of infer-
ence methods that is inherently superior and that performance 
depends largely on the specific implementation of each individual 
method. For example, several inference methods used the same 
sparse linear-regression approach (Lasso21), but they exhibited 
large variation in performance because they implemented differ-
ent data resampling strategies (Table 1 and Fig. 2a).

Complementarity of different inference methods
To examine the observed variation in performance, we analyzed 
complementary advantages and limitations of the different meth-
ods. As a first step, we explored the predicted interactions of all 
the assessed methods by principal-component analysis (PCA; 
Online Methods). The top principal components reveal four 
clusters of inference methods, which coincide with the major 
categories of inference approaches (Fig. 2b). Even though the 
prediction accuracy of methods from the same category varied 
(Fig. 2a), PCA revealed that they have an intrinsic bias toward 
predicting similar interactions.

We next analyzed how method-specific biases influenced 
the recovery of different connectivity patterns (network 
motifs), and we observed characteristic trends for different 
method categories (Fig. 2c). For example, feed-forward loops 
were recovered most reliably by mutual-information and 
correlation-based methods, whereas sparse-regression and  
Bayesian-network methods performed worse at this task. The 
reason for this is that the latter approaches preferentially select 
regulators that independently contribute to the expression 
of target genes. However, the assumption of independence 
is violated for genes regulated by mutually dependent tran-
scription factors, as in the case of feed-forward loops. Indeed,  
linear cascades were more accurately predicted by regres-
sion and Bayesian-network methods. This shows that current  
methods experience a trade-off between performance on  
cascades and performance on feed-forward loops.

For a subset of the transcription factors contained in the 
gold standards, knockout or overexpression experiment data 
were supplied to DREAM5 participants, and several inference 

Figure 1 | The DREAM5 network inference 
challenge. Assessment involved the following 
steps (from left to right). (1) Participants 
were challenged to infer the genome-wide 
transcriptional regulatory networks of E. coli, 
S. cerevisiae and S. aureus as well as an in silico 
(simulated) network. (2) Gene-expression data 
sets for a wide range of experimental conditions 
were compiled. Anonymized data sets were 
released to the community with the identities of 
the genes hidden. (3) Twenty-nine participating 
teams inferred gene regulatory networks. In 
addition, we applied six off-the-shelf inference methods. (4) Network predictions from individual teams were integrated to form community networks.  
(5) Network predictions were assessed using experimentally supported interactions from E. coli and S. cerevisiae as well as the known in silico network.
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Table 1 | Network inference methods
ID Synopsis  Reference

Regression: transcription factors are selected by target gene–specific (i) sparse linear-regression and (ii) data-resampling approaches.

1 Trustful Inference of Gene REgulation using Stability Selection (TIGRESS): (i) Lasso; (ii) the regularization parameter selects five 
transcription factors per target gene in each bootstrap sample.

 33a

2 (i) Steady-state and time-series data are combined by group Lasso; (ii) bootstrapping.  34a

3 Combination of Lasso and Bayesian linear regression models learned using reversible-jump Markov chain Monte Carlo simulations.  35a

4 (i) Lasso; (i) bootstrapping.  36
5 (i) Lasso; (ii) area under the stability selection curve.  36
6 Application of the Lasso toolbox GENLAB using standard parameters.  37
7 Lasso models are combined by the maximum regularization parameter selecting a given edge for the first time.  36a

8 Linear regression determines the contribution of transcription factors to the expression of target genes. —a,b

Mutual information: edges are (i) ranked based on variants of mutual information and (ii) filtered for causal relationships.

1 Context likelihood of relatedness (CLR): (i) spline estimation of mutual information; (ii) the likelihood of each mutual information score is 
computed based on its local network context.

 11a,b

2 (i) Mutual information is computed from discretized expression values.  38a,b

3 Algorithm for the reconstruction of accurate cellular networks (ARACNE): (i) kernel estimation of mutual information; (ii) the data 
processing inequality is used to identify direct interactions.

 9a,b

4 (i) Fast kernel-based estimation of mutual information; (ii) Bayesian local causal discovery (BLCD) and Markov blanket (HITON-PC) 
algorithm to identify direct interactions.

 39a

5 (i) Mutual information and Pearson’s correlation are combined; (ii) BLCD and HITON-PC algorithm.  39a

Correlation: edges are ranked based on variants of correlation.

1 Absolute value of Pearson’s correlation coefficient.  38
2 Signed value of Pearson’s correlation coefficient.  38a,b

3 Signed value of Spearman’s correlation coefficient.  38a,b

Bayesian networks: optimize posterior probabilities by different heuristic searches.

1 Simulated annealing (catnet R package, http://cran.r-project.org/web/packages/catnet/), aggregation of three runs. —
2 Simulated annealing (catnet R package, hyperlink above). —
3 Max-min parent and children algorithm (MMPC), bootstrapped data sets.  40
4 Markov blanket algorithm (HITON-PC), bootstrapped data sets.  41
5 Markov boundary induction algorithm (TIE*), bootstrapped data sets.  42
6 Models transcription factor perturbation data and time series using dynamic Bayesian networks (Infer.NET toolbox,  

http://research.microsoft.com/infernet/).
—a

Other approaches: network inference by heterogeneous and novel methods.

1 GENIE3: a Random Forest is trained to predict target gene expression. Putative transcription factors are selected as tree nodes if they 
consistently reduce the variance of the target.

 19a

2 Codependencies between transcription factors and target genes are detected by the nonlinear correlation coefficient 2 (two-way ANOVA). 
Transcription-factor perturbation data are up-weighted.

 20a

3 Transcription factors are selected by maximizing the conditional entropy for target genes, which are represented as Boolean vectors with 
probabilities to avoid discretization.

 43a

4 Transcription factors are preselected from transcription-factor perturbation data or by Pearson’s correlation and then tested by iterative 
Bayesian model averaging (BMA).

 44

5 A Gaussian noise model is used to estimate whether the expression of a target gene changes in transcription-factor perturbation measurements.  45
6 After scaling, target genes are clustered by Pearson’s correlation. A neural network is trained (genetic algorithm) and parameterized 

(back-propagation).
46a

7 Data is discretized by Gaussian mixture models and clustering; interactions are detected by generalized logical network modeling ( 2 test). 47a

8 The 2 test is applied to evaluate the probability of a shift in transcription-factor and target-gene expression in transcription-factor 
perturbation experiments.

47a

Meta predictors: (i) apply multiple inference approaches and (ii) compute aggregate scores.

1 (i) z scores for target genes in transcription-factor knockout data, time-lagged CLR for time series, and linear ordinary differential-
equation models constrained by Lasso (Inferelator); (ii) resampling approach.

48a

2 (i) Pearson’s correlation, mutual information and CLR; (ii) rank average. —
3 (i) Calculates target-gene responses in transcription-factor knockout data, applies full-order, partial correlation and transcription factor-

target codeviation analysis; (ii) weighted average with weights trained on simulated data.
—a

4 (i) CLR filtered by negative Pearson’s correlation, least-angle regression (LARS) of time series, and transcription factor perturbation data; 
(2) combination by z scores.

49

5 (i) Pearson’s correlation, differential expression (limma), and time-series analysis (maSigPro); (ii) naive Bayes. —a

Methods have been manually categorized based on participant-supplied descriptions. Within each class, methods are sorted by overall performance (see Fig. 2a). Note that generic references 
have been used if more specific ones were not available.
aDetailed method description included in Supplementary Note 10; bOff-the-shelf algorithm applied by challenge organizers.
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methods explicitly used this informa-
tion. Consequently, these methods recov-
ered target genes of deleted transcription  
factors more reliably than the inference 
methods that did not leverage this infor-
mation (Fig. 2c). Explicit use of such 
knockouts also helped methods to draw 
the direction of edges between tran-
scription factors more reliably. These 
observations suggest that measurements 
of transcription-factor knockouts can 
be informative for network reconstruc-
tion. In particular, this is the case for the  
E. coli data set, which contained the larg-
est number of such experiments (Online 
Methods). To further explore the informa-
tion content of different experiments, we employed a machine 
learning framework22 to systematically analyze the information 
gain from microarrays grouped according to the type of experi-
mental perturbation (knockouts, drug perturbations, environ-
mental perturbations and time series; Supplementary Note 5). 
We found that experimental conditions independent of transcrip-
tion factor knockout and overexpression also provide informa-
tion, though at a reduced level.

Community networks outperform individual inference methods
Network inference methods have complementary advantages and 
limitations under different contexts, which suggests that combining  
the results of multiple inference methods could be a good strategy 
for improving predictions. We therefore integrated the predic-
tions of all participating teams to construct community networks 
by rescoring interactions according to their average rank across 
all methods (Supplementary Note 6). The integrated community 
network ranks first for in silico, third for E. coli and sixth for  
S. cerevisiae out of the 35 applied inference methods, which shows 
that the community network is consistently as good or better than 
the top individual methods (Fig. 2a). Thus it has by far the best 
performance reflected in the overall score. We stress that, even 
though top-performing methods for a given network are com-
petitive with the integrated community method, the performance  
of individual methods does not generalize across networks.  

Given the biological variation among organisms and the experi-
mental variation among gene-expression data sets, it is difficult 
to determine beforehand which methods will perform optimally 
for reconstructing an unknown regulatory network. In con-
trast, the community approach performs robustly across diverse  
data sets.

We next analyzed how the number of integrated methods 
affects the performance of community predictions by examin-
ing randomly sampled combinations of individual methods. 
On average, community methods perform better than indi-
vidual inference methods even when integrating small sets of 
individual predictions: for example, just five teams (Fig. 3a).  
Performance increases further with the number of integrated 
methods. For instance, given 20 inference methods, their inte-
gration ranks first or second in 98% of the cases (Fig. 3b). We 
also found that the performance of the community network can 
be improved by increasing the diversity of the underlying infer-
ence methods. Consensus predictions from teams using similar 
methodologies were outperformed by consensus predictions from 
diverse methodologies (Fig. 3c).

A key feature in taking a community network approach is robust-
ness to the inclusion of a limited subset (up to ~20%) of poorly per-
forming inference methods (Fig. 3d). Poor predictors essentially 
contributed noise, but this did not affect the performance of the 
community approach as a whole. This finding is crucial because 
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Figure 2 | Evaluation of network inference 
methods. Inference methods are indexed 
according to Table 1. (a) The plots depict the 
performance for the individual networks (area 
under precision-recall curve, AUPR) and the 
overall score summarizing the performance across 
networks (Online Methods). R, random predictions; 
C, integrated community predictions. (b) Methods 
are grouped according to the similarity of their 
predictions via principal-component analysis. 
The second versus third principal components 
are shown; the first principal component 
accounts mainly for the overall performance 
(Supplementary Note 4). (c) The heat map 
depicts method-specific biases in predicting 
network motifs. Rows represent individual 
methods and columns represent different types of 
regulatory motifs. Red and blue show interactions 
that are easier and harder to detect, respectively.
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the performance of individual methods when inferring regulatory 
networks for poorly studied organisms is not known a priori and is 
hard to evaluate empirically: even top performers on a benchmark 
network (such as E. coli) have varied performance when inferring 
a new, unknown network (such as S. aureus). On the other hand, 
adding good performers substantially increased the performance 
of the community approach (Fig. 3d), which highlights the impor-
tance of developing high-quality individual inference methods.

E. coli and S. aureus community networks
To gain insights into transcriptional gene regulation for two 
bacteria, E. coli and S. aureus, we constructed networks for both 
organisms by integrating the predictions of all teams using the 
average-rank method. Figure 4 shows the community networks 
for both organisms at a cutoff of 1,688 edges, which corresponds 
to an estimated precision of 50% for the E. coli network based on 
the gold standard of experimentally validated interactions from 
RegulonDB (Online Methods). At this cutoff, 50% of the de novo 
predicted regulatory edges were recovered known interactions; 
the remaining 50% may be false positives or newly discovered 
true interactions.

The precision of the S. aureus network cannot be measured 
accurately because there are comparatively few experimentally 
supported interactions available. Nevertheless, we confirmed the 
robustness of the consensus predictions by evaluating the network 
using the largely computationally derived interactions from the 
RegPrecise database23 (Supplementary Note 7).

We found that the E. coli and S. aureus networks both have a 
modular structure24: that is, they comprise clusters of genes that are 
more densely connected amongst themselves than with other parts 
of the network. After identifying these modules24, we tested them 
for enrichment of Gene Ontology terms (Supplementary Note 7). 
Network modules are strongly enriched for very specific biological 
processes. This allowed us to assign unique functions to most of the 
identified modules in both networks (Fig. 4 and Supplementary 
Data 6). As a specific example of an enriched module, 27 genes 
in S. aureus are highly enriched for pathogenic genes (Fig. 4b).  

These include genes encoding exotoxins (set7, set8, set11, set14), 
genes responsible for biofilm formation (tcaR) and antibiotic 
metabolism (tetR), as well as one encoding a cell surface protein 
(fnb). The remaining 20 genes of this module are uncharacterized, 
but the predicted connections suggest their role in pathogenesis. 
This example illustrates how the inferred networks generate spe-
cific hypotheses regarding both the regulation and function of 
uncharacterized genes, enabling targeted validation efforts.

Experimental support of novel interactions
In addition to validation against known interactions from the 
RegulonDB gold standard, we experimentally tested a subset of 
novel predictions from the E. coli community network described 
above. We selected five transcription factors (rhaR, cueR, purR, 
mprA and gadE), and then we tested each of the 53 corres-
ponding target gene predictions individually (Supplementary  
Note 8). Using qPCR, we measured the expression of each 
predicted target gene in the absence or presence of a chemical  
inducer known to activate the corresponding transcription factor  
(rhamnose for rhaR, copper sulfate for cueR, adenine for 
purR, carbonyl cyanide m-chlorophenylhydrazone for mprA 
and hydrogen chloride for gadE). We also measured target 
gene expression in transcription-factor deletion strains, again 
in the absence or presence of the chemical inducer. Putative 
targets were considered confirmed if they showed (i) strong 
response to the inducer of the respective transcription factor  
in the wild type and (ii) no response to the inducer in the  
transcription-factor deletion strain. We observed a clear differ-
ence between the two responses (>1.8 fold) for 23 novel targets 
out of 53 tested (Fig. 4c); this corresponds to a precision of 
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performance of community networks, which were obtained by integrating 
three randomly selected inference methods (i) from the same cluster  
or (ii) from different clusters. (d) The plots show the overall score for  
an initial community network formed by integrating all individual  
methods except for the best five or worst five. The worst five (left) and 
best (right) five methods were added one by one to form additional 
community networks.
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~40% for novel interactions, which is in 
line with our estimate of ~50% precision  
based on known interactions from 
RegulonDB. We note that these data sup-
port a direct regulatory effect of the tested 
transcription factor on the target gene, 
but chromatin immunoprecipitation 
experiments would be required to deter-
mine physical binding.

We observe a large variation in experi-
mental validation among individual 
transcription factors (Fig. 4c). For purR, 
a key regulator in purine nucleotide 
metabolism, 10 of the 12 predicted tar-
get genes were experimentally supported. 
Nucleotide metabolism is a fundamental 
biological process that is affected across 
multiple conditions, and thus purR 
regulation is well sampled across the  
E. coli data set. However, in the case of 
rhaR, a key regulator in l-rhamnose deg-
radation, none of the novel target-gene predictions showed signs 
of regulation. l-Rhamnose degradation is a specialized process 
that is only activated in the presence of l-rhamnose, and there 
were no conditions in the E. coli data set in which l-rhamnose 
degradation was explicitly tested. In the instance of cueR, a tran-
scriptional regulator activated in the presence of copper, four 
out of seven novel target-gene predictions were confirmed. As 
with rhaR, there were no conditions in the data set that explicitly 
tested copper regulation, yet unlike with rhaR, network infer-
ence methods were able to identify true positive cueR regulatory 
interactions. These results suggest that although the overall pre-
cision for the network is high, the reliability of predictions for 
individual transcription factors can vary. When constructing a 
compendium of microarrays for global network inference, one 
should thus avoid any bias toward oversampling a narrow set of  
experimental conditions.

DISCUSSION
The DREAM project provides a unique framework where  
network inference methods from a community of experts are 
collected and impartially assessed on benchmark data sets.  

The collection of 35 inference methods assessed here constitutes 
a unique resource, as it spans all commonly used approaches in 
the field. In addition, the collection includes novel approaches 
(including the two best individual team performers of the  
challenge), representing a snapshot of the latest developments 
in the field.

Our analyses revealed specific advantages and limitations of 
different inference approaches (see Supplementary Note 9 and 
the full description of approaches in Supplementary Note 10). 
Sparse linear-regression methods performed well, but only when 
data resampling strategies such as bootstrapping were used (the 
best-performing regression methods all used data resampling, 
whereas the worst-performing methods did not). Sparsity con-
straints employed by these methods effectively increased per-
formance for cascade motifs at the cost of missing interactions 
in feed-forward loops, fan-in motifs and fan-out motifs. Bayesian-
network methods exhibited below-average performance in this 
challenge, likely because they use heuristic searches, which are 
often too costly for systematic data resampling and may be better  
suited for smaller networks. Information theoretic methods 
performed better than correlation-based methods, but the two 
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Figure 4 | E. coli and S. aureus community 
networks. (a,b) At a cutoff of 1,688 edges, the 
E. coli community network (a) connects 1,505 
genes (including 204 transcription factors, shown  
as diamonds), and the S. aureus network (b)  
connects 1,084 genes (85 transcription factors). 
Network modules were identified and tested for 
Gene Ontology–term enrichment, as indicated 
(gray genes do not show enrichment).  
A network module enriched for Gene Ontology 
terms related to pathogenesis is highlighted in 
the S. aureus network. (c) The schematics depict 
newly predicted E. coli regulatory interactions 
that were experimentally tested. The pie chart 
depicts the breakdown of strongly and weakly 
supported targets (Online Methods). The 
positive controls were six known interactions 
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approaches had similar biases in predicting regulatory relation-
ships. They also performed better than regression and Bayesian-
network methods on feed-forward loops, fan-ins and fan-outs 
(the more densely connected parts of the network), but they had 
an increased rate of false positives for cascades. Meta predictors 
performed more robustly across data sets than other categories of 
methods; however, they could not match the robustness and per-
formance of the community predictions, presumably because they 
combine methods that do not provide sufficient diversity. Among all 
categories, methods that made explicit use of direct transcription-
factor perturbations (knockout or overexpression) greatly 
improved prediction accuracy for downstream targets (albeit at  
an increased false-positive rate for cascades). For improving 
individual inference approaches, we suggest the following:  
(i) optimally exploit direct transcription-factor perturbations;  
(ii) employ strategies to avoid overfitting, such as data resampling; 
and (iii) develop more effective approaches to distinguish direct 
from indirect regulation (feed-forward loops versus cascades).

Overall, methods performed well for the in silico and prokary-
otic (E. coli) data sets. However, inferring gene regulatory net-
works from the eukaryotic (S. cerevisiae) data set proved to 
be a greater challenge. A fundamental assumption of network 
inference algorithms is that mRNA levels of transcription  
factors and their targets tend to be correlated; we found that this is 
true for E. coli, but not for S. cerevisiae (Supplementary Note 5).  
Although the lower coverage of S. cerevisiae gold standards may 
also play a role (E. coli has the best-known regulatory network 
of any free-living organism16), the poor correlation at the mRNA 
level in S. cerevisiae is likely due to the increased regulatory 
complexity and prevalence of post-transcriptional regulation 
in eukaryotes, which would suggest that accurate inference of 
eukaryotic regulatory networks requires additional inputs, such 
as promoter sequences and data sets for transcription-factor 
binding and chromatin modification7.

Individual studies that introduce a novel inference method 
naturally tend to focus on its advantages in a particular appli-
cation, which can paint an overoptimistic picture of perform-
ance13. Whereas previous studies have explored strengths  
and weaknesses of inference approaches2,3, the present assess-
ment shows that method performance is not robust across  
species and varies greatly even within the same category of infer-
ence methods (Table 1). This implies that performance is related 
more to the details of implementation than the choice of under-
lying methodology.

In network inference, variation in performance presents a prob-
lem, but at the same time offers a solution. By integrating the 
predictions from individual methods into community networks, 
we show that advantages of different methods complement each 
other and limitations tend to be canceled out. Instead of relying 
on a single inference method with uncertain performance on a 
previously unseen network, integrating predictions across infer-
ence methods becomes the best strategy. We note that not all of the  
29 methods are required for enhanced performance. By considering 
complementary methods, we have shown that performance can be 
substantially improved with as few as three methods (Fig. 3c).

Ensemble-based methods have a storied past, with applica-
tions ranging from economics1 to machine learning25. In sys-
tems biology, robust models are often constructed from ensembles 
of instances (for example, different parameterizations or model 

structures) that are derived from experimental data via a single 
approach26–30, such as Monte Carlo sampling. In contrast, we 
formed consensus predictions from a large array of heterogeneous 
inference approaches. These ‘meta predictors’ have been success-
ful in other machine learning competitions31,32. We have observed 
from previous DREAM challenges anecdotal evidence that com-
munity predictions can rank among the top performers13, but 
we did not previously attempt a systematic study of prediction 
integration for network inference. Here we established, through 
rigorous assessments and experimentally derived data sets, the 
performance robustness of prediction integration for transcrip-
tional gene network inference.

The shortcomings of individual methods revealed in our 
assessment present many opportunities for improving these 
methods. We also expect further improvements in performance 
from advanced community approaches that: (i) actively leverage 
the method-specific advantages with regard to the data sets and 
networks of interest; (ii) optimize diversity in the ensemble—for 
example, by weighting methods so as to balance the contribution 
of different method categories or PCA clusters; and (iii) employ 
more sophisticated voting schemes to negotiate consensus net-
works. To help spur developments in these areas, we provide the 
GP-DREAM web platform for the community to develop and 
apply network inference and consensus methods (http://dream.
broadinstitute.org/). We will continue to expand this free toolkit 
with top-performing methods from the DREAM challenges as 
well as other methods contributed by the community.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Expression data and gold standards. The design of the DREAM5 
network inference challenge is outlined in Figure 1 (full descrip-
tion in Supplementary Note 1). Affymetrix gene expression data 
sets were compiled for E. coli, S. aureus and S. cerevisiae from 
the Gene Expression Omnibus (GEO) database50. Microarray 
data sets were uniformly normalized using Robust Multichip 
Averaging (RMA)51. Each data set queries the underlying regula-
tory network in hundreds of different conditions ranging from 
time courses to gene, drug and environmental perturbations. 
Note that the number of measurements of transcription factor– 
specific perturbations varies among the data sets (S. aureus: 
0/161, E. coli: 67/806 and yeast: 3/537). The fourth data set is 
an in silico counterpart to the E. coli data set, generated using 
GeneNetWeaver52,53 (version 4.0). The structure of the in silico 
network corresponds to the E. coli transcriptional regulatory  
network from RegulonDB16 (10% random edges were added, 
resulting in 3,940 interactions). In addition to the gene-
 expression data, we provide a list of putative transcription factors 
for each data set and several descriptive features for each micro-
array experiment (for example, the target of a gene deletion, or 
the time point of a time-series experiment). It is important to 
note that the identity of the organisms from which the data was 
generated was unknown to the participants. This was achieved 
by encrypting certain aspects of the data and by anonymizing 
gene names.

Participants were presented the challenge of inferring direct 
regulatory interactions between transcription factors and target 
genes from the given gene-expression data sets. The submission 
format was a ranked list of predicted regulatory relationships  
for each network3.

The gold standard set of known transcriptional interactions 
for E. coli was obtained from RegulonDB16. We only included 
well-established interactions annotated with ‘strong evidence’ 
according to RegulonDB evidence classification (2,066 inter-
actions). For S. cerevisiae, we considered several alternative 
gold standards derived from orthogonal data sets, namely ChIP 
binding data and evolutionary conserved transcription-factor 
binding motifs18 as well as systematic transcription-factor dele-
tions54 (Supplementary Note 3). For the results reported in 
the main text, we used the most stringent gold standard, which 
includes only interactions that have strong evidence of both 
binding and conservation18.

All data and scripts are available in Supplementary Data 1 and 
at the DREAM website (http://wiki.c2b2.columbia.edu/dream/
index.php/D5c4). The original microarray data sets are also pub-
lically available at the Many Microbe Microarrays Database55 
(M3D, http://m3d.bu.edu/dream/).

Performance metrics. A detailed description of all performance 
metrics is given in Supplementary Note 4. Briefly, transcription 
factor–target predictions were evaluated as a binary classifica-
tion task. The gold-standard networks represent the true posi-
tive interactions; the remaining pairs are considered negatives. 
Only the top 100,000 edge predictions were accepted. Pairs of 
nodes not part of the submitted list were considered to appear 
randomly ordered at the end of the list. Performance was assessed 
using the area under the ROC curve (AUROC) and the area under 
the precision vs. recall curve (AUPR)14. Note that predictions 

for genes that are not part of the gold standard, i.e., for which 
no experimentally supported interactions exist, were ignored in 
this evaluation.

AUROC and AUPR were separately transformed into p values 
by simulating a null distribution for 25,000 random networks. 
Random edge lists were constructed by sampling edges from the 
submitted edge lists of the participants and assigning these edges 
random ranks between 1 and 100,000. The histogram of ran-
domly obtained AUROC and AUPR values was fit using stretched 
exponentials to extrapolate the distribution to values beyond the 
immediate range of the histogram14. To compute an overall score 
that summarizes the performance over the three networks with 
available gold standards (E. coli, S. cerevisiae and in silico), we 
used the same metric as in the previous two editions of the chal-
lenge3,14, which is defined as the mean of the (log-transformed) 
network-specific p values
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Clustering of inference approaches by principal-component 
analysis. We constructed a prediction matrix P in which rows cor-
respond to edges (transcription factor–target pairs) and columns 
correspond to inference methods. The element pi,j of this matrix 
is thus the rank assigned to edge i by inference method j. We only 
considered edges that figured in the top 100,000 predicted edges 
of at least three inference methods, which yielded 1,175,525 inter-
actions across the four data sets. Note that knowledge of a gold-
standard network is not required for the PCA; thus the S. aureus 
predictions were included in this analysis. The dimensionality of 
the combined prediction matrix (including the predictions for all 
four data sets) was reduced by PCA using SVDLIBC with stand-
ard parameters (http://tedlab.mit.edu/~dr/SVDLIBC/). Results 
are consistent when performing PCA for each of the four data 
sets separately (Supplementary Note 4).

Network motif analysis. The goal of the network motif analysis 
is to evaluate, for a given network inference method, whether 
some types of edges of motifs are systematically predicted less (or 
more) reliably than expected3. We considered the six motif types 
illustrated in Figure 2. For each type of motif m, we identified 
all instances in the gold-standard network and determined the 
average rank rm assigned to its edges by the inference method. We 
further determined the average rank rm assigned to all edges that 
are not part of this motif type. The prediction bias is given by the 
difference r rm m. See Supplementary Note 4 for details.

Experimental materials and design. Novel predictions were 
selected from the E. coli community network with greater than 
50% predicted precision. Transcription factors with at least eight 
novel predictions were selected, including rhaR, cueR, purR, 
mprA and gadE (note that the data set supplied to the DREAM5  
participants did not contain any knockout measurement for these 
transcription factors). Primers were designed for all novel target 
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gene predictions after accounting for operon structure, and at 
least one known target of the transcription factor was included as 
a positive control. A total of 53 predictions and 6 positive controls 
were tested (Supplementary Data 7).

For each transcription factor, a knockout strain was generated 
from the background E. coli strain BW25113. Each transcription 
factor was induced by a different stimulus: rhamnose for rhaR,  
copper sulfate for cueR, adenine for purR, carbonyl cyanide  
m-chlorophenylhydrazone for mprA and HCl for gadE. Four 
experimental conditions were used for each transcription factor: 
background strain without inducer (WT(−)), background strain 
with inducer (WT(+)), deletion strain without inducer ( (−)) 
and deletion strain with inducer ( (+)). Three biological repli-
cates were generated for all experimental conditions. Cultures were 
grown in LB media or minimal media (Supplementary Note 8),  
and incubation was performed in darkened shakers (300 r.p.m.) at 
37 °C. PCR primers were designed for all target genes. Target genes 
were quantified through qPCR using LightCycler 480 SYBR Green I  
Master Kit (Roche Applied Science). True positive interactions 
were expected to meet two criteria: (i) a strong response to the TF 

inducer in wild type and (ii) no or weak response to the TF inducer 
in the TF-deletion strain. Target gene interactions were consid-
ered to have ‘strong support’ if the ratio of criteria 1 to criteria 2, 
(WT(+)/WT(−)) / ( (+)/ (−)), was greater than 2 and ‘weak sup-
port’ if the ratio was between 1.8 and 2 (Supplementary Data 7).

50. Barrett, T. et al. NCBI GEO: archive for functional genomics data sets–10 
years on. Nucleic Acids Res. 39, D1005–D1010 (2011).

51. Bolstad, B.M., Irizarry, R.A., Astrand, M. & Speed, T.P. A comparison of 
normalization methods for high density oligonucleotide array data based 
on variance and bias. Bioinformatics 19, 185–193 (2003).

52. Marbach, D., Schaffter, T., Mattiussi, C. & Floreano, D. Generating realistic 
in silico gene networks for performance assessment of reverse engineering 
methods. J. Comput. Biol. 16, 229–239 (2009).

53. Schaffter, T., Marbach, D. & Floreano, D. GeneNetWeaver: in silico 
benchmark generation and performance profiling of network inference 
methods. Bioinformatics 27, 2263–2270 (2011).

54. Hu, Z., Killion, P.J. & Iyer, V.R. Genetic reconstruction of a functional 
transcriptional regulatory network. Nat. Genet. 39, 683–687 (2007).
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