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Antibiotic resistance is an increasingly serious public health 
threat1. Understanding pathways allowing bacteria to survive 
antibiotic stress may unveil new therapeutic targets2–8.  
We explore the role of the bacterial epigenome in antibiotic 
stress survival using classical genetic tools and single-molecule 
real-time sequencing to characterize genomic methylation 
kinetics. We find that Escherichia coli survival under antibiotic 
pressure is severely compromised without adenine methylation 
at GATC sites. Although the adenine methylome remains  
stable during drug stress, without GATC methylation,  
methyl-dependent mismatch repair (MMR) is deleterious and, 
fueled by the drug-induced error-prone polymerase  
Pol IV, overwhelms cells with toxic DNA breaks. In multiple  
E. coli strains, including pathogenic and drug-resistant clinical 
isolates, DNA adenine methyltransferase deficiency potentiates 
antibiotics from the b-lactam and quinolone classes. This work 
indicates that the GATC methylome provides structural support 
for bacterial survival during antibiotic stress and suggests 
targeting bacterial DNA methylation as a viable approach to 
enhancing antibiotic activity. 

Bacteria exposed to antibiotics mount complex stress responses  
that promote survival9–14, and accumulating evidence suggests 
that inhibiting such responses potentiates antimicrobial activity in  
organisms sensitive, tolerant and resistant to drugs2,3,5,8,15–18. In  
both prokaryotes and eukaryotes, genetic pathways underlying 
responses to environmental insults have been widely studied and 
involve some of the most phylogenetically conserved proteins known19. 
In eukaryotes, stress can also elicit epigenetic modification of his-
tones and DNA that support long-lasting downstream responses20–23.  
The role of prokaryotic epigenomes in stress, however, is much  
less clear.

Bacteria lack histones but harbor a diverse group of enzymes able 
to insert epigenetic modifications in the form of sequence-specific 
methylation of DNA bases24. Prokaryotic DNA methyltransferases 

(MTases) function either alone or as part of restriction modification 
systems, participating in various cellular processes including antiviral 
defense, cell cycle regulation, DNA replication and repair, and tran-
scriptional modulation24–26. Although several methylation-dependent  
epigenetic switches have been described27–32, genome-wide methyl-
ation patterns and kinetics have, until recently, been difficult or 
impossible to study in a high-throughput manner33–36. In this study, 
we use genetic and genomic tools to explore the function and behavior 
of the bacterial methylome during antibiotic stress.

To assess the role of DNA methylation in antibiotic stress survival, 
we first tested the ability of E. coli lacking different MTases to with-
stand sublethal doses of β-lactam antibiotics. Laboratory E. coli K12 
possesses four functional MTases that methylate adenines or cytosines 
in distinct target sequences24,36–40 (Fig. 1a). Survival of subinhibitory 
ampicillin exposure by log-phase E. coli was unaffected in mutants 
lacking the HsdM, YhdJ or Dcm MTase. However, bacteria deficient 
in DNA adenine methyltransferase (Dam) were highly susceptible to 
this low drug dose (Fig. 1b and Supplementary Fig. 1a,b). Increased 
ampicillin susceptibility in dam-deficient E. coli was also reflected 
in a reduced minimum inhibitory concentration (MIC) and mini-
mum bactericidal concentration (MBC) (Supplementary Fig. 1c). 
Complementation with a plasmid expressing dam but not gfp restored 
wild-type survival levels in ∆dam E. coli (Fig. 1c and Supplementary 
Fig. 2a,b). Because Dam might also behave as a transcriptional 
repressor independently of its DNA methyltransferase function37, 
we tested the ability of plasmids expressing previously characterized 
methylation-incompetent Dam variants38 (Supplementary Fig. 2a)  
to rescue ampicillin hypersensitivity in ∆dam E. coli. Consistent 
with a role for GATC methylation, mutant Dam expression mini-
mally altered the ampicillin hypersensitivity of ∆dam E. coli, if at all 
(Supplementary Fig. 2b,c). Finally, we sought to determine whether 
∆dam E. coli hypersensitivity extended to drugs other than ampicillin. 
Subinhibitory treatment with aztreonam, meropenem and cephalexin, 
other β-lactams commonly used in the clinic, was also significantly 
potentiated in the absence of dam (Fig. 1d). Together, these results 
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suggest that Dam-dependent methylation is important for bacterial 
survival during β-lactam stress.

Dam methylates GATC sites throughout the genome of organisms 
belonging to multiple orders of γ-proteobacteria, including the clini-
cally relevant genera Escherichia, Salmonella, Yersinia and Vibrio24. To 
explore the behavior of the Dam methylome in the context of antibi-
otic pressure, we extracted genomic DNA from E. coli growing in the 
presence or absence of ampicillin stress and analyzed genome-wide 
GATC methylation over time using single-molecule real-time (SMRT) 
sequencing. With SMRT technology, epigenetic modifications on 
template DNA strands are inferred through the unique kinetic sig-
nature they engender during sequencing35,39, and the fraction of DNA 
molecules methylated at each GATC site (frac) is estimated (Fig. 2a). 
In all samples, consistent with the processive kinetics of Dam40, the 
majority of GATC sites were detected as methylated in a high fraction 
of the DNA molecules sequenced (0.97 ± 0.05 on average) (Fig. 2b and 
Supplementary Data Set 1). Notably, during the log-to-stationary  
phase transition, we identified 19 GATC sites that appeared to be 
transiently or stably unmethylated or hemimethylated (Fig. 2c,d, 
Supplementary Tables 1 and 2, and Supplementary Data Set 1). 
Transiently unmethylated sites typically became steadily more or less 
methylated over time, following clear temporal patterns (Fig. 2c,d).  
Because prokaryotes lack demethylases, unmethylated GATC 
sequences exist mainly where DNA-binding proteins sterically hinder 
Dam activity immediately following DNA replication24. Consistent 
with this notion, 18 of these 19 sites fell within intergenic regions, 
mostly overlapping with or closely neighboring footprints of tran-
scription factors (Supplementary Table 1). To our knowledge, only 
five of these sites have previously been reported as protected24,41–44.

Remarkably, the GATC methylome and its kinetics were largely 
unaltered by ampicillin stress. The genome-wide distribution of the 
fraction of methylated bases was similar in treated and untreated cells 
over time, indicating that global methylation levels were not increased 
or decreased by drug exposure (Fig. 2b). Furthermore, methyla-
tion at the vast majority of GATC sites, including those displaying 
dynamic methylation patterns, remained unchanged by treatment 
(Fig. 2d, Supplementary Table 2 and Supplementary Data Set 1).  
Comparison of treated and untreated samples at each time point iden-
tified only one GATC site (site 19) displaying statistically significant 
differential methylation, which occurred at a single time point and only 
on one strand (Supplementary Fig. 3 and Supplementary Table 2).  

This event’s biological consequences are unclear, however, as expres-
sion of the surrounding gene (gdhA) was unperturbed by ampicillin 
treatment (data not shown). Thus, ampicillin stress does not majorly 
alter the E. coli Dam methylome.

Given the remarkable stability of adenine methylation during 
antibiotic exposure and the contrasting drug-sensitive phenotype of 
dam deletion mutants, we reasoned that the GATC methylome must 
provide structural rather than regulatory support for bacterial sur-
vival during antibiotic stress. Widespread genomic Dam methylation 
enables cellular processes requiring discrimination between the fully 
methylated parental DNA strand and the newly synthesized DNA 
strand whose GATC sites are not yet modified45. Specifically, tran-
sient hemimethylation at replication forks orients the MMR system, 
guiding replacement of mismatched bases to nascent DNA strands 
only46. Notably, without GATC methylation, the methyl-dependent 
endonuclease MutH can introduce double-strand breaks (DSBs) near 
mismatches targeted for repair47–51. Mismatches are rare in log-phase  
E. coli52 (<1 per replication cycle), but, under conditions of stress, their 
frequency can increase, in part, through induction of the error-prone 
polymerase Pol IV (encoded by dinB)53–55. We thus hypothesized that 
potentiation of β-lactam killing in the absence of Dam was a result of 
drug-induced mutagenesis fueling a genotoxic MMR pathway.

To test this hypothesis, we assessed the effect of deleting dinB, mutH 
or the mismatch-binding component of the MMR complex, mutS, on 
antibiotic hypersensitivity in ∆dam bacteria. Strikingly, without the 
mutagenic polymerase Pol IV, ∆dam E. coli survival of ampicillin stress 
returned to wild-type levels (Fig. 3a and Supplementary Fig. 4a).  
Similarly, removal of mutS or mutH on the ∆dam background also 
abrogated ampicillin hypersensitivity (Fig. 3b and Supplementary 
Fig. 4b). In ∆mutH ∆dam bacteria, optical density (OD) was some-
what diminished in ampicillin (Supplementary Fig. 4b), but this did 
not reflect decreased viability during treatment (Fig. 3b). Further con-
sistent with our hypothesis, we found that ∆dam but not ∆dinB ∆dam 
or ∆mutH ∆dam bacteria developed significantly more DNA damage 
than wild-type cells during ampicillin treatment, as assessed by termi-
nal deoxynucleotidyl transferase (TdT) nick end-labeling (TUNEL)56 
(Fig. 3c,d). Thus, without the GATC methylome, β-lactam–elicited 
Pol IV introduces mismatches that are converted into lethal DNA 
strand breaks by a deleterious MMR system (Fig. 3e).

The finding that genomic GATC methylation supports survival 
of β-lactam stress in E. coli evokes the possibility of targeting Dam 
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Figure 1 Increased sensitivity to β-lactams in the  
absence of Dam methylation. (a) DNA methylation  
in E. coli K12: methylated DNA bases, MTases and  
their respective target sequences are shown. (b) Wild-type (WT) or  
MTase-deficient E. coli BW25113 were grown in lysogeny broth (LB) to an  
OD of 0.3 and then treated with 2.5 µg/ml ampicillin (~0.5× the MIC) or  
left untreated. (c) Log-phase wild-type and dam-deficient E. coli harboring  
the indicated Cmr plasmid encoding either dam or gfp were cultured in LB  
supplemented with chloramphenicol (15 µg/ml) with or without ampicillin  
(2.5 µg/ml). (d) Wild-type and dam-deficient E. coli grown to an OD of 0.3 were  
treated for 4 h with the indicated drugs: Azt, aztreonam; Mer, meropenem;  
Ceph, cephalexin. In b–d, survival was determined by monitoring colony-forming units  
(CFUs) in bacterial cultures at the indicated time points and is expressed relative to CFUs at 0 h. Data are shown as the mean percent survival ± s.e.m.  
of n = 3 independent experiments: NS, not significant; *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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to therapeutically potentiate antibiotic drug 
activity. Dam is an attractive target, as it lacks 
mammalian homologs but is conserved in 
several enteric pathogens57–59. Furthermore, 
because multiple drugs can induce mutagenic responses in bacte-
ria9,12,55,60–62, treatment with antibiotics other than β-lactams should 
also be potentiated in the absence of GATC methylation. Indeed, sur-
vival of dam-deficient E. coli in the presence of subinhibitory doses of 
the quinolones norfloxacin, ofloxacin and ciprofloxacin was severely 
compromised in comparison to wild-type bacteria (Fig. 4a). As seen 
with ampicillin, hypersensitivity to ofloxacin could be abrogated 
by deleting dinB, mutH or mutS in ∆dam E. coli (Supplementary  
Fig. 5a,b). Consequently, drug potentiation in the absence of GATC 
methylation occurs via a similar mechanism across different antibiotic 
classes and may be broadly exploitable.

Next, we sought to determine whether virulent clinical isolates 
could also be sensitized to treatment by the removal of Dam. As in  
E. coli K12, dam deletion in uropathogenic E. coli (UPEC) strain 
UTI89 (ref. 63) substantially increased sensitivity to ciprofloxacin 
(Fig. 4b). Ciprofloxacin is a valuable drug for UPEC treatment, 
but its use is increasingly restricted by the spread of quinolone 
resistance64. To assess whether targeting Dam might allow resen-
sitization of resistant strains, we deleted dam in a highly ciprofloxacin- 
resistant (CiproR) clinical UPEC isolate bearing multiple common 
quinolone resistance–conferring mutations (Supplementary Table 3). 
Remarkably, although dam deletion did not restore full sensitivity to 

this isolate, the ciprofloxacin MIC for the CiproR UPEC was reduced 
by over half and its MBC90 value was reduced by 4.6-fold (Fig. 4c). 
Thus, removing GATC methylation can potentiate antibiotic lethality 
in both drug-sensitive and drug-resistant pathogenic organisms.

Together, our results define an important structural role for the 
bacterial epigenome in antibiotic stress survival. Characterization 
of the adenine methylome demonstrated highly stable global GATC 
methylation levels during log-to-stationary phase transition and 
subinhibitory β-lactam stress, and, although we identified several 
previously uncharacterized GATC sites with variable methylation 
over time, antibiotic stress did not significantly alter these patterns.

Despite the remarkable stability of the GATC methylome, E. coli  
lacking Dam are hypersensitive to antibiotic stress. Deletion of  
E. coli dcm or Neisseria meningitidis Mod11A (an adenine MTase) was 
also reported to alter bacterial sensitivity to toxic compounds, but 
increased resistance rather than hypersensitivity was observed and 
attributed to altered gene expression36,65. Although we cannot exclude 
additional involvement of transcriptional dysregulation, our data sug-
gest that the GATC methylome represents an important backbone 
structure enabling DNA repair processes to function in the context 
of β-lactam and quinolone stress. Specifically, GATC methylation 
likely supports antibiotic-elicited mutagenesis dependent on Pol IV,  
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Figure 2 Kinetics of the Dam methylome during 
normal growth and under antibiotic stress. 
Genomic DNA extracted from wild-type E. coli 
MG1655 growing with or without ampicillin 
(2.5 µg/ml) was analyzed by SMRT sequencing 
for genome-wide GATC methylation over 4 h. 
Methylation is shown as the average fraction  
of sequenced molecules methylated for each 
GATC site (frac); dotted red lines indicate the 
limit of detection (0.25). (a) Representative  
frac data for untreated bacteria. The x axis 
shows position on a selected genomic  
segment; arrows indicate unmethylated  
(black) or hemimethylated (orange) GATC sites. 
(b) Genome-wide frac distributions during 
growth in LB (solid line, gray fill) or LB with 
ampicillin (dashed line, no fill) over time.  
Data are shown as mean frac values ± s.d.  
(c) Genome-wide kinetics of adenine 
methylation at GATC sites during log-to-
stationary phase growth in LB. Black lines 
indicate frac values as shown in a. Colored 
hashes show the positions of genes on either 
strand. The innermost ring is a reference map of 
genomic positions in megabases; oriC, origin of 
replication. Colored indicators on the outermost 
ring highlight sites detected as unmethylated 
(frac <0.025, coefficient of variation <0.5)  
in at least one sample set, with colors 
corresponding to methylation increase (red)  
or decrease (blue) over time, stable absence of 
methylation (black), hemimethylation (orange) 
or other (gray). (d) Methylation kinetics for 
untreated (solid lines) and ampicillin-treated 
(dotted lines) E. coli at GATC positions that  
were unmethylated in at least one sample.  
The x axis depicts time. Data are shown as 
the mean frac values ± s.e.m. of n = 2–3 
independent experiments.
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an error-prone polymerase induced transcriptionally or post- 
translationally in the presence of several antibiotics53–55. In the 
absence of GATC methylation, MMR machinery can convert post-
replicative mismatches to DSBs47, which accumulate to toxic levels in 
mutagenizing drug–exposed dam-deficient bacteria. In ∆dam E. coli, 
the DNA damage response program (SOS) is constitutively subind-
uced66. dinB is within the SOS regulon67,68; thus, ∆dam E. coli may 
be primed for rapid Pol IV synthesis, enhancing their sensitivity. In 
addition, DNA breaks caused by MMR in mutating, drug-exposed 
∆dam bacteria likely further promote SOS pathway induction, lead-
ing to more Pol IV activity69. Consequently, during antibiotic stress, 
a toxic feedback loop may establish itself (Fig. 3e). This model is 
consistent with earlier observations that DNA-damaging agents cause 
MMR-dependent genotoxicity in ∆dam bacteria49,50,65,70,71; however, 
our data further suggest that any initial DNA damage directly caused 
by antibiotics is not sufficient to kill ∆dam bacteria, as the error-prone  
Pol IV polymerase is required for hypersensitivity (Fig. 3a and 

Supplementary Fig. 5a). Measuring mutagenesis rates in ∆dam  
bacteria is challenging (because of MMR toxicity to mutating cells), 
and we cannot completely exclude a requirement for Pol IV in the 
introduction of initial DNA damage. This seems unlikely, however, 
given that similar levels of damage were recorded in wild-type and 
∆dinB bacteria during drug treatment (Fig. 3d). Thus, our data sup-
port a model in which antibiotic stress becomes lethal as mutagenic 
Pol IV activity fuels a genotoxic MMR response in the absence of 
GATC methylation.

Our findings raise the possibility of targeting Dam to enhance the 
therapeutic activity of existing drugs. Several classes of antibiotics 
induce mutagenesis at subinhibitory concentrations9,12,55,60–62 and 
may thus be subject to potentiation by this mechanism. Enhancement 
of drug activity could be harnessed to lower effective therapeutic 
doses in drug-sensitive infections and may also allow resensitization  
of resistant organisms. Indeed, our data suggest that targeting Dam 
methylation can partially reverse ciprofloxacin resistance in UPEC. 
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More broadly, this observation suggests that mutagenic stress 
responses can occur and be therapeutically exploited in highly drug-
resistant pathogenic organisms. In addition to drug potentiation, 
inhibiting Dam has been proposed as a strategy to weaken bacterial 
pathogenicity in vivo25,72–74, as GATC methylation controls viru-
lence gene expression in some organisms. Although elevated rates of 
mutagenesis and induction of certain prophages75 in the absence of 
Dam could complicate a Dam inhibitor–based monotherapy, these 
drawbacks may be mitigated in the context of combination treatment. 
In summary, our results suggest that targeting bacterial epigenomic 
structures that support mutagenic stress responses may be a viable 
strategy for enhancing antibiotic activity.
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oNLINe MeThoDs
Bacterial strains and plasmids. The laboratory bacterial strains used are 
derived from E. coli K12 (BW25113 obtained from the Coli Genetic Stock 
Center or MG1655 obtained from the American Type Culture Collection). 
UPEC strain UTI89 was kindly provided by M. Conover and S. Hultgren. The 
ciprofloxacin-resistant UPEC isolate (UPEC CiproR) was collected from the 
Brigham and Women’s Hospital specimen bank (Supplementary Table 3). 
Deletion mutants on the BW25113 background were derived from the Keio 
collection following KanR cassette removal. Deletion mutants on the MG1655 
background were constructed by allelic transduction from Keio collection 
strains using classical P1 phage transduction followed by KanR cassette excision. 
The dam-null phenotype was confirmed by PCR alone or with electrophoresis 
of genomic DNA digested with DpnII, which cleaves only unmethylated GATC 
sites. For construction of the ∆dam UTI89 and ∆dam UPEC CipoR strains, the 
parent strain bearing a KM208 plasmid-based Red-recombinase system was 
electroporated with a PCR amplicon encoding the ∆dam::KanR allele. Recovered 
cells were selected for kanamycin-resistant homologous recombinants. The 
plasmid was cured, and the KanR cassette was removed. The genotype of each 
deletion strain was verified by colony PCR. The plasmid used in the dam com-
plementation studies, namely pZS*31 (Fig. 1c and Supplementary Fig. 2), was 
obtained from Expressys and belongs to the pZ vector family. pZS*31 has a 
pSC101* origin of replication (which yields a low copy number of 3–5 plasmids 
per cell) and a chloramphenicol resistance marker. Sequence encoding either 
Dam (with the 500-bp upstream region flanking the gene) or GFP was inserted 
into the multiple-cloning site. For complementation experiments using mutated 
versions of dam, the plasmid containing the dam insert was engineered using 
either Gibson cloning or site-directed mutagenesis (New England BioLabs, Q5 
Site-Directed Mutagenesis kit). Quinolone resistance–conferring mutations in 
the CipoR UPEC clinical isolate were identified though whole-genome Illumina 
sequencing of genomic DNA (PureLink Pro-96 Genomic Purification kit, Life 
Technologies). Libraries were prepared as previously described76. Raw sequenc-
ing reads were processed by trimming adaptor sequences and discarding reads 
shorter than 28 bp. Processed reads were aligned to the E. coli MG1655 genome 
using breseq77. The genome alignments were searched for known quinolone 
resistance–conferring mutations in the acrA, acrR, beaS, cpxA, cpxB, envZ, 
gyrA, gyrB, marA, marR, mdtA, mdtB, mdtC, ompC, ompF, ompR, parC, parE, 
soxR, soxS and tolC genes and their regulatory regions.

Bacterial kill curves and determination of MBC and MIC. For time course 
kill curves and MBC assays, stationary-phase bacterial cultures were diluted 
by 1:1,000 in 25 ml of LB medium in 250-ml baffled flasks. Cultures were 
grown at 37 °C and 200 r.p.m. until they reached an OD of ~0.3. Cultures were 
transferred to 24-well plates at a final volume of 500 µl per well or to 96-well 
plates at a final volume of 150 µl per well and were either left untreated or 
treated with the indicated drugs at the specified doses. Plates were sealed using 
breathable membranes (BreatheEasy, BEM-1) and incubated at 37 °C and  
900 r.p.m. for the remainder of the experiment. CFUs were enumerated at 
desired time points (4 h for MBC determination) by spot plating 5 µl of tenfold 
serially diluted culture onto LB agar and counting colonies after overnight 
growth at 37 °C. Percent survival at each time point was calculated in relation 
to the CFUs immediately before treatment (0 h). For MIC determination, anti-
biotics were serially diluted in a 96-well plate and mixed with stationary-phase 
bacterial cultures diluted by 1:10,000 in a final volume of 150 µl of LB per well. 
OD was measured from plates after 24 h of growth at 37 °C and 900 r.p.m.

Genomic DNA extraction and PacBio sequencing. Genomic DNA was 
extracted from E. coli K12 MG1655 LB cultures grown in the presence or 
absence of ampicillin using the GenElute Bacterial Genomic DNA Extraction 
kit (Sigma). To assess genomic methylation status, genomic DNA extracted 
from stationary-phase cultures was quantified, digested using DpnII (New 
England BioLabs) and run on a 0.8% agarose gel containing ethidium bromide. 
For methylome analyses, samples were sent to the University of Massachusetts 
Medical School Deep Sequencing Core, where methylome data were obtained by 
PacBio Core Enterprise instrument SMRT. SMRTbell DNA template libraries for 
SMRT sequencing were prepared according to the instructions in the Procedure 
& Checklist for 10-kb Template Preparation and Sequencing (Pacific Biosciences). 
Briefly, genomic DNA samples were first sheared to a target size of 10 kb using 

g-Tube devices (Covaris), treated with DNA damage repair mix, end-repaired 
and ligated to hairpin adaptors. SMRTbell libraries were prepared using the 
DNA Template Prep kit 2.0 (3–10 kb) from Pacific Biosciences. Incompletely 
formed SMRTbell templates were digested using exonuclease III (New England 
BioLabs) and exonuclease VII (Affymetrix). The prepared SMRTbell libraries 
were sequenced using a 120-min movie acquisition time and P4 polyerase-C2 
DNA sequencing reagent kits following standard instructions for a PacBio RS 
II instrument (Pacific Biosciences). Each E. coli sample was sequenced on four 
or more SMRT cells, yielding a total of approximately 200-fold double-stranded 
coverage of the bacterial genome, and two or three biological replicates were 
sequenced for each antibiotic treatment condition (Supplementary Data Set 2).  
Sequencing coverage was comparable for methylated and unmethylated sites 
(Supplementary Table 1 and Supplementary Data Set 2), ruling out coverage 
loss as an explanation for the absence of methylation.

Bioinformatics analyses of SMRT sequencing data. Genome-wide detection 
of base modification and affected motifs was performed using the standard 
(default) settings in the RS Modification and Motif Analysis.1 protocol included 
in SMRT Analysis version 2.3.0 Patch 5. The FASTA reference genome sequence 
(E. coli K12 MG1655; NC_000913.2) used for base modification detection analy-
ses was obtained from Pacific Biosciences. For motif identification, the base 
modification quality value (QV) threshold setting was left at the default value 
of 30. Interpulse duration (IPD) values were measured for all nucleotide posi-
tions in the genome and compared with expected durations in an in silico kinetic 
model of the polymerase for significant associations. Frac values were calculated 
in SMRT Analysis using a standard mixture-model analysis of the pooled kinetic 
data for a given sample. The frac output value provides information about the 
fraction of individual molecules displaying a methylation signal at each identi-
fied motif site within the genome (Supplementary Data Set 1). Methylation frac 
values were derived from IPD data within the SMRT pipeline using the single-
site mixture model39. A value of 0 was substituted for frac values that were below 
detection limits. The values from two or three experimental replicates were 
compared by Student’s t test, and false discovery rate (FDR)-adjusted P values 
were obtained by the method of Benjamini and Hochberg (Supplementary Data 
Set 1). Circular graphs were generated using the Circos software package.

Flow cytometry assessment of DNA damage. E. coli log-phase cultures  
were transferred to a 96-well plate (200 µl/well) and treated with ampicillin  
(2.5 µg/ml) or hydrogen peroxide (100 mM) for 30 min to 2 h at 37 °C and 900 r.p.m.  
Bacteria were pelleted by centrifugation at 3,000g for 5 min. The supernatant was 
discarded. Cell pellets were resuspended vigorously in 200 µl of cold 4% para-
formaldehyde in PBS and incubated at room temperature for 30 min to allow 
fixation. Bacteria were centrifuged again and then resuspended in 200 µl of 
cold permeabilization buffer (0.1% Triton X-100 in 0.1% sodium citrate). After  
2 min at room temperature, bacteria were centrifuged and washed in PBS. After 
pelleting the cells and discarding the supernatant, cells were resuspended in  
50 µl of TUNEL labeling mix (dUTP-FITC and TdT enzyme) or 50 µl of TUNEL 
labeling reagent (dUTP-FITC) according to the manufacturer’s instructions 
(Roche, In Situ Cell Death Detection Kit, Fluorescein). Bacteria were stained 
for 1 h at 37 °C. Cells were then washed twice with PBS, resuspended in 1 µg/ml 
propidium iodide in PBS and analyzed by flow cytometry (BD LSR Fortessa). 
Propidium iodide–negative cells, which lack genomic material, were excluded 
from the analysis. Gating was determined using single-color and unstained 
controls as references. For Figure 3d and statistical analysis, background stain-
ing with labeling reagent only was subtracted for each sample to account for 
treatment-dependent shifts in autofluorescence or stain retention.

Statistical analyses. Statistical analysis was performed on log10-transformed 
data (for survival experiments) or on untransformed data (for TUNEL 
assays) using two-way ANOVA followed by a post-hoc t test using Sidak’s 
multiple-comparison test correction. In all cases, the P values indicated are  
multiplicity adjusted.

76. Baym, M. et al. Inexpensive multiplexed library preparation for megabase-sized 
genomes. PLoS One 10, e0128036 (2015).

77. Barrick, J.E. et al. Identifying structura l variation in haploid microbial genomes 
from short-read resequencing data using breseq. BMC Genomics 15, 1039 
(2014).
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