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Haematopoietic stem and progenitor cell (HSPC) emer-
gence is orchestrated by a highly regulated developmental 
programme. In the mid-gestation mouse embryo, HSPCs 

are born in the aorta–gonad–mesonephros (AGM) region around 
embryonic day (E)10.5. Recent studies have examined haematopoi-
etic development within the AGM using sorted populations to cata-
logue the transcriptional programme of haemogenic endothelium 
(HE) specification and its differentiation trajectory to functional 
haematopoietic stem cells (HSCs)1–5. Niche-derived signals are 
important for HSC specification; however, a comprehensive atlas of 
the cellular components of the entire AGM niche and their influ-
ence on HSC fate has been lacking. In this Technical Report, to close 
this gap, we applied CellComm to obtain insights into the microen-
vironmental regulation of HSPC emergence in the AGM region. We 
performed extensive experimental validation of CellComm’s predic-
tions using zebrafish and mouse embryos as well as human induced 
pluripotent stem cells (iPSCs), then confirmed the roles of several 
ligand–receptor interactions and downstream transcriptional regu-
lators implicated in haematopoietic development. These findings 
enhance our understanding of cellular dynamics in the HSC niche 
and provide further guidance for precise differentiation of iPSCs 
towards HSPCs. CellComm is a valuable resource for the broader 
scientific community to investigate critical cell–cell regulatory  

interactions from single-cell RNA sequencing (scRNA-seq) or spa-
tial transcriptomics data.

Results
The cellular landscape of the AGM microenvironment. 
CellComm is a systems biology algorithm combining transcriptome 
data (scRNA-seq or spatial transcriptomics) with protein–protein 
interaction networks to infer how communication between cells 
activates downstream signalling pathways and transcriptional pro-
grammes dictating cell fates (Fig. 1a and Supplementary Note 1).  
Briefly, CellComm infers which cell types communicate on the 
basis of ligand–receptor interactions identified by calculating intra-
cluster mean expression of ligands or receptors among pairwise 
combinations of cell types. If spatial transcriptomics data are avail-
able, CellComm considers co-localization of cell types or niches to 
predict cell communication. By weighting protein–protein inter-
action networks using intracluster co-expression measurements, 
CellComm implements an optimization algorithm to identify paths 
in the interactome that connect cell surface genes to downstream 
transcriptional regulators, predicting putative effectors of signalling 
networks in a fully data-driven manner.

To investigate the process by which HSCs are produced 
de novo during embryogenesis, we first performed scRNA-seq 
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Fig. 1 | Diversity of cell types in the AGM ecosystem. a, CellComm workflow to predict intercellular communication networks and signalling pathways 
from scRNA-seq or spatial transcriptomics data. (1) CellComm predicts possible cell–cell communication on the basis of co-expression patterns of curated 
ligand–receptor pairs; when spatial transcriptomics are available, CellComm infers spatially resolved cell–cell interactions. (2) CellComm next implements 
an optimization algorithm to identify paths between cell surface receptors and transcriptional regulators (TR) in a large-scale weighted protein–protein 
interaction network. Each interaction in the protein interaction network is weighted by cluster- or cell-type-specific co-expression measurements derived 
from the scRNA-seq data. The algorithm then finds paths connecting cell surface receptors to transcriptional regulators, predicting a putative signalling 
pathway. (3) CellComm implements several downstream analytics to extract biological information from the data, such as identification of interacting cell 
types, ranking of ligand–receptor pairs and identification of signalling pathways as well as gene regulatory networks downstream of cell surface receptors. 
These analytics aid in elaborating testable hypotheses, which can be validated experimentally in the cell type(s) of interest. Created with BioRender.com. 
b, tSNE analysis colour-coded by transcriptional cluster or cell state; cluster 14 was not assigned to any cell type or state. c, Genes preferentially expressed 
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Source numerical data are available in Source data.
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on mouse AGM at E10.25, a developmental timepoint during 
which HSC precursors (T1preHSCs) emerge via the process of 
endothelial-to-haematopoietic transition (EHT)6,7. Following man-
ual dissection, we profiled the entire community of cells within the 
AGM, as well as fluorescence-activated cell sorting (FACS)-enriched 
populations of endothelial cells (ECs) and immunophenotypic 

T1preHSCs, to investigate how cellular crosstalk in the develop-
mental niche regulates HSPC formation (Extended Data Fig. 1a,b).

We used CellRouter to identify cell communities within the 
AGM ecosystem8. Unsupervised clustering of 9,492 cells identi-
fied 19 distinct transcriptional clusters, which were annotated on 
the basis of expression of established marker genes (Fig. 1b,c and 
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Methods). We applied t-stochastic neighbour embedding (tSNE) 
analysis to visualize clusters and putative cell types or states on the 
tSNE space (Fig. 1b and Extended Data Fig. 1c–e). Investigating the 
proportion of cells within the whole AGM and sorted fractions that 
fell into the identified cell types revealed that the cell state defined 
as T1preHSC1 was composed of a mixture of cells coming from the 
EC and T1preHSC fractions, indicative of the presence of a sub-
set of ECs that was already transcriptionally similar to T1preHSCs 
(Fig. 1d). In-depth analysis of EC and T1preHSC states suggested 
that this subset has haemogenic potential, and it is thus referred to 
hereafter as HE (Extended Data Fig. 1f–i, Supplementary Fig. 1 and 
Supplementary Note 2).

The intercellular communication network of the AGM niche. We 
next applied CellComm to identify intercellular communication 
networks potentially active within the AGM. A tSNE analysis using 
only ligands and receptors showed that cells clustered by cell type, 
suggesting cell-type-specific expression of signalling molecules 
(Fig. 2a). Our intercellular communication network of the AGM 
revealed that cellular states defined as endothelial cell 1 (EC1), HE, 
mesonephros, urogenital ridges (UGRs) and somites (sclerotome 
and dermomyotome) as well as the mesenchymal subset mesenchy-
mal stem and progenitor cell 1 (MSPC1) interact with EC1, HE and 
T1preHSC populations through a higher diversity of ligand–recep-
tor pairs compared with the neural and muscle lineages (Fig. 2b). In 
addition to known interactions between ECs, HE and T1preHSCs, 
both somite- and UGR-derived signals were previously implicated 
in HSC development, consistent with our results9,10. Applying Gene 
Ontology analysis, we found that ligands were enriched in terms 
such as cell differentiation, migration and angiogenesis, with some 
biological functions found across several cell types, while others 
were more cell-type specific (Supplementary Fig. 2a). Analysis of 
cell surface receptors revealed that signalling-related processes, 
such as phosphorylation, were broadly enriched across cell types 
(Supplementary Fig. 2b).

We next ranked ligand–receptor pairs across selected cell–cell 
interactions on the basis of the magnitude of their co-expression 
in interacting cell types as reported in Fig. 2b (Supplementary Fig. 
2c). Among prioritized pairs, we selected a subset with known func-
tion in haematopoiesis (for example, Cd44 and Kit) as well as some 
candidates with less well-characterized roles (for example, integ-
rins and Mfap2; Fig. 2c) for further validation. This analysis impli-
cated several signalling processes in T1preHSC differentiation. For 
instance, Cd44, expressed by HE and T1preHSCs, was recently 
identified by scRNA-seq as an HE marker and regulator of EHT11. 
Additionally, we noted several ligand–receptor pairs enriched with 
integrins, a subset of which were previously described to regulate 
HSPC development12.

To validate our algorithm and confirm ligand–receptor interac-
tions required for definitive haematopoiesis in vivo, we employed 
morpholino-based knockdown in zebrafish embryos, an experi-
mentally tractable model that has proven invaluable for identify-
ing genes and pathways impacting HSPC development13–15. Itgb1b 
knockdown reduced expression of the conserved HSPC mark-
ers, runx1 and cmyb, at 36 h post-fertilization (hpf), as reported16 
(Fig. 3a). Knockdown of itgb3a, mfap2 and cd44a/b also reduced 
runx1/cmyb expression in the embryo (Fig. 3a), while knockdown 
of itgb3b had no effect (Extended Data Fig. 2a). Interestingly, knock-
down of cd93, a published marker of emerging AGM HSCs, which 
fails to enrich for engrafting cells2, dramatically increased HSPC 
production as determined by runx1/cmyb expression, suggestive of 
negative regulation (Fig. 3a). These data confirm that CellComm 
accurately predicted receptors influencing HSPC emergence, both 
positively and negatively.

Human iPSCs (hiPSCs) offer a tractable alternative to study the 
molecular mechanisms of HSPC development from HE. While 
bona fide HSCs have not been derived from hiPSCs thus far in the 
absence of transcriptional modulation, in vitro protocols do recapit-
ulate some aspects of HSPC ontogeny. HiPSCs can be differentiated 
into CD34+ HE that undergoes EHT and acquires haematopoietic 
surface markers17. Using this protocol, we detected cells expressing 
CD44, ITGB3, CD93 and KIT at the HE (CD34+ CD45−) and HSPC 
stage (CD34+ CD45+) by flow cytometry (Fig. 3b and Extended 
Data Fig. 2b). Among the analysed markers, we focused on ITGB3, 
which was expressed on only a subset of CD34+ cells and increased 
as cells underwent EHT (Fig. 3b). While ITGB3 expression can 
be used to enrich long-term repopulating HSCs and label HE in 
both differentiated hiPSC cultures and mouse embryos, functional 
assessment of downstream ITGB3 signalling has been lacking18,19. 
We found that inhibition of ITGB3 signalling using a neutralizing 
antibody severely impaired hiPSC-derived EHT in vitro (Fig. 3c,d). 
In line with a significant decrease in floating haematopoietic cells, 
cultures failed to upregulate the haematopoietic transcription fac-
tor RUNX1C and its downstream target GFI1, supporting a require-
ment for active ITGB3 signalling in EHT (Fig. 3e).

In contrast to that of integrin family members, cd44, and mfap2, 
knockdown of cd93 enhanced HSPC gene expression in zebraf-
ish (Fig. 3a). During iPSC-derived EHT, inhibition of CD93 via 
short interfering RNA (siRNA)-mediated knockdown significantly 
increased the number of floating cells without compromising dif-
ferentiation potential (Fig. 3f and Extended Data Fig. 2c–e). This 
result is in line with significant increases in HSPCs observed by 
flow cytometry after morpholino-mediated knockdown of cd93 in 
zebrafish (Fig. 3g). Analysis of endogenous expression patterns of 
cd93 in zebrafish supports a role as a negative regulator of EHT: cd93 
was present in all trunk vessels across the window of EHT (Fig. 3h).  

Fig. 3 | Systematic validation of ligand–receptor interactions. a, WISH for runx1/cmyb in standard control and experimental morpholino (MO)-injected 
embryos at 36 hpf. Scale bars, 100 µm. N for each condition is indicated in the lower left corner of the micrographs. b, Flow-cytometric quantification of 
indicated surface markers in hiPSC-derived HE and haematopoietic cells. At least N = 2 experiments per marker. Each datapoint is from an independent 
differentiation culture. Bars represent mean. Schematic figure created with BioRender.com. c, Brightfield images of hiPSC–EHT cultures with and without 
neutralizing antibody treatment against ITGB3. Scale bars, 250 µm. d, Quantification of live, floating cells after seven days of at least five independent 
EHT cultures. Bars represent mean ± s.d. One-way ANOVA, P values were adjusted for multiple comparisons using Dunnett’s multiple comparisons test. 
****P < 0.0001. e, RT–qPCR for haematopoietic genes RUNX1c and GFI1 at day 7 of EHT after ITGB3 blocking versus control. Bars represent mean ± s.d. 
Unpaired t test, *P = 0.0201 (RUNX1c); P = 0.0234 (GFI1). N = 7, from four independent differentiations. f, Quantification of live, floating cells after 7 days 
of EHT culture in CD93 knockdown cultures compared with control siRNA-treated wells. N = 5 independent experiments, unpaired t test P = 0.0295. 
Bar graphs represent mean ± s.d. g, Flow-cytometric quantification of mCherry+/EGFP+ cells from transgenic flk1:mCherry/cmyb:EGFP embryos at 48 hpf 
in control versus cd93 morpholino-injected embryos. Unpaired t test, **P = 0.0013. Bar graphs represent mean ± s.d. h, WISH timecourse for zebrafish 
cd93 across the window of EHT. Black arrowheads indicate intersegmental vessels, and red and blue brackets denote the dorsal aorta (DA) and posterior 
cardinal vein (PCV), respectively. Scale bars, 500 µm and 50 µm (insets). The experiment was performed twice, analysing 20 fish in total. i, Maximum 
intensity projection of a confocal z stack of double FISH for zebrafish cd93 and runx1 mRNA at 24 hpf. Vasculature is visualized with GFP antibody staining 
in transgenic embryos. Yellow outline indicates the position of runx1+ haemogenic EC. Scale bars, 50 µm (top image) and 25 µm (three lower images, 
representing enlarged area within the dashed rectangle). Three biological replicates have been analysed. Source numerical data are available in Source data.
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However, expression in the dorsal aorta was highest at 24 hpf and 
decreased over time (red brackets). High-resolution imaging of the 
aorta revealed that runx1+ cells had markedly less expression of 
cd93 compared with surrounding ECs in the artery (Fig. 3i), con-
sistent with the downregulation of this gene as a corollary of hae-
matopoietic fate acquisition. Finally, in situ hybridization for mfap2 
in zebrafish embryos shows broad expression at 24–36 hpf, con-
sistent with CellComm predictions. Importantly, mfap2 expression 
can be found in cells adjacent to runx1+ HE cells at 24 hpf, indi-
cating a paracrine role in HSPC development (Extended Data Fig. 
2f,g). To test whether MFAP2 can act as a soluble Notch ligand, we 
cultured hiPSC-derived HE in the presence of recombinant human 
MFAP2. While we observed significant decreases in the number 
of haematopoietic cells, there was a relative increase in the undif-
ferentiated CD34+ CD45+ double-positive population (Extended 
Data Fig. 2h,i). Together, these data suggest that CellComm accu-
rately identified active ligand–receptor pairs that impact vertebrate 
HSPC development, either positively or negatively regulating the 
production of human HSPCs from HE. Although CellComm pre-
dicted genes that may either promote or buffer HSPC formation, 
prediction of the directionality of the phenotype for any given gene 
modulation warrants further refinement of CellComm and experi-
mental confirmation.

Signalling pathways driving T1preHSC differentiation. Somites, 
UGRs and macrophages have each been previously reported to pro-
vide signals to regulate HSC development9,10,20–23. Although model-
ling studies have indicated that secreted ligands can act at distances up 
to 250 µm from their source24, quantitative measurements of spatial 
distances between interacting tissues are often lacking. Regardless, 
interactions between spatially segregated tissues are important for 
patterning and specification, which is mediated by gradients of 
secreted molecules. Therefore, in addition to adjacent cells in the 
niche microenvironment, molecules secreted by distant tissues, 
such as somites and UGR, may influence haematopoietic develop-
ment22,23. Using selected cell–cell interactions reported in Fig. 2c, we 
built a ligand–receptor interaction network predicted to be involved 
in HE and T1preHSC differentiation. This network contained sev-
eral integrin, insulin growth factor (Igf1r and Igf2r), Kit and Tgfβ 
signalling components (Eng, the receptor for Tgfb2 and Bmp7) as 
well as other cell surface molecules, including Cd44, Cd47 and Cd93 
(Fig. 4a). Among these cell surface receptors, CellComm identi-
fied a subset for which there were connecting paths to downstream 
transcriptional regulators, suggesting functional signalling path-
ways (Fig. 4b). To reconstruct such signalling pathways, CellComm 
implements an optimization algorithm to find paths in a protein 
interaction network weighted by gene co-expression measurements  
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Fig. 4 | Reconstruction of downstream pathways. a, Ligand–receptor network built from ligands and receptors involved in HE and T1preHSC interactions 
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intermediate proteins in the path between cell surface receptors and potential downstream transcriptional regulators indicated. Source numerical data are 
available in Source data.
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that connect cell surface receptors to transcriptional regulators 
(Supplementary Note 1). Notably, the mesonephros subset and UGR 
subset 1 (UGR1) expressed Kit ligand (Kitl), which activates Kit sig-
nalling and is critical for HSC survival25 (Fig. 4b). The functional 
relevance of Kitl provided from each cell type to HSPC development 
warrants further investigation; nonetheless, several transcriptional 
regulators, including Ybx1, Stat3, Nr0b2, Trim28 and Eed, as well as 
App, whose intracellular domain influences gene expression26, were 
identified as potential downstream mediators.

The UGR is a unique component of the embryonic but not 
the adult haematopoietic niche, which flanks both sides of the 
dorsal aorta, where nascent HSCs are born. Previous investiga-
tions have indicated that the UGR is important for normal hae-
matopoietic development23. Thus, we endeavoured to analyse the 
UGR1–T1preHSC1 interaction in more detail (Fig. 5a). CellComm 
identified several paths in the weighted protein interaction network 
leading to putative transcriptional regulators of haematopoietic 
development (Ybx1, Nr0b2, App and Stat3) as well as known regula-
tors, Mef2c and Cebpa, involved in lymphoid and myeloid devel-
opment, respectively27,28. Interestingly, CellComm reconstructed 
the Jak–Stat signalling pathway downstream of Kit, consistent with 
previous reports, suggesting that it predicts biologically meaning-
ful signalling pathways from unbiased data analysis29 (Fig. 5a). The 
enriched regulons of these transcriptional regulators are involved 
in hallmark processes of HSC identity, such as a multipotency pro-
gramme involving myeloid and lymphoid processes, regulated by 
Nr0b2 and Stat3, and a transcriptional programme regulating ribo-
some biogenesis, predicted to be regulated by Ybx1 and App (Fig. 
5b). Indeed, a gene regulatory network analysis indicated that Stat3 
and Nr0b2 regulate critical transcription factors for HSC identity, 
including Ikzf1, Ikzf2, Lmo2, Myb and Hlf (ref. 2) (Fig. 5c). On the 
other hand, Ybx1 and App regulate ribosomal genes, which have 
been increasingly appreciated to be important for haematopoietic 
differentiation30 (Fig. 5c). Interestingly, we independently identi-
fied Neurl3, a recently described HE marker3, as a component of 
the HSC programme in our T1preHSC gene regulatory network 
analysis (Fig. 5c). In our dataset, Neurl3, expressed in HE and the 
T1preHSC1 subset, is predicted to be controlled by Stat3 and Nr0b2, 
suggesting further directions to functionally investigate this regula-
tory network (Fig. 5c and Extended Data Fig. 1i). To demonstrate 
the flexibility of CellComm to study cell–cell interactions, we also 
successfully applied it to identify downstream transcriptional regu-
lators in HE from our dataset, with an independently derived sam-
ple, and between ontologically distinct fractions in the AGM region 
(Fig. 5d,e, Extended Data Fig. 3 and Supplementary Note 3).

CellComm identifies genes involved in developmental haemato-
poiesis. To better understand the transcriptional dynamics of the 
identified downstream regulators and obtain further insights about 
the functional role(s) of the genes selected for experimental vali-
dation, we reconstructed the EHT differentiation trajectory using 
CellRouter[ ] (Extended Data Fig. 4 and Supplementary Note 4). 
On the basis of these analyses, we selected Stat3, Nr0b2, Ybx1 and 
App for experimental validation, as they were highly prioritized by 

CellComm, dynamically regulated during EHT and less well char-
acterized in developmental haematopoiesis. To more comprehen-
sively test CellComm’s predictions, we selected low-scoring genes 
Brd7 and Cebpa as internal controls to calibrate the lower bound 
for detection of relevant targets from single-cell transcriptomic data 
(Figs. 4b and 5a, and Extended Data Fig. 4).

To functionally validate candidate transcriptional regula-
tors during haematopoietic development, we exposed developing 
zebrafish embryos to C188-9, a small-molecule inhibitor of Stat3, 
and observed a dose-dependent reduction in runx1+/cmyb+ HSPC 
expression (Fig. 6a and Extended Data Fig. 5a). While directed 
differentiation of HSPCs from hiPSCs in the presence of C188-9 
did not significantly reduce CD34+ CD45+ progenitors, it specifi-
cally affected their multipotent potential as evidenced by loss of 
mixed-type colonies (GEMM) in colony-forming unit (CFU) 
assays and the complete loss of lymphoid differentiation capacity as 
assayed by CD5+ CD7+ T-cell progenitor differentiation (Fig. 6b,c 
and Extended Data Fig. 5b–d).

To confirm a role for additional transcriptional regulatory 
candidates brd7, nr0b2, ybx1, cebpa/b and app in haematopoietic 
development, we performed morpholino-knockdown and chemi-
cal inhibition in zebrafish embryos. Knockdown of cebpa or cebpb 
had no effect and knockdown of brd7 reduced runx1/cmyb expres-
sion, whereas nr0b2a and appb increased the appearance of HSPC 
markers (Fig. 6d and Extended Data Fig. 5e). Utilizing an inducible 
clustered regularly interspaced short palindromic repeats interfer-
ence (CRISPRi) approach in hiPSCs, we were able to inhibit YBX1 
coincident with formation of HE. Whereas a 50% reduction in tran-
script levels of YBX1 in HE mildly affected formation of phenotypic 
CD34+CD45+ HSPCs, knockdown impaired overall colony-forming 
potential as well as lymphoid differentiation potential (Extended 
Data Fig. 5f–i).

Knockdown-mediated enhancement in runx1+/cmyb+ staining 
occurring via loss of the orthologue appb was corroborated using 
2-PMAP, a small-molecule inhibitor of APP translation and by 
CRISPR-mediated knockout of appb (Fig. 6e). In vivo, appb messen-
ger RNA was inversely correlated with runx1 expression: appb tran-
script was enriched in the dorsal aspect of the aorta, and reduced in 
HE (Fig. 6f). Moreover, APP inhibition in mouse embryo explant 
cultures significantly increased the percentage of nascent haemato-
poietic (CD45+VE-CAD+) cells, which upon more detailed charac-
terization represent phenotypic T2-preHSCs (Fig. 6g and Extended 
Data Fig. 5j,k). An undescribed role for App in HSPC development 
was further supported by a significant increase in lineage-negative, 
Sca1+, Kit+ cells in foetal liver samples from E14.5 App knockout 
embryos, compared with littermate controls (Fig. 6h and Extended 
Data Fig. 5l).

Taken together, our extensive functional validation of cell sur-
face receptors (or ligands) and transcriptional regulators established 
that out of the 11 gene candidates functionally investigated in this 
study, CellComm correctly predicted 5 out of 5 cell surface recep-
tors or ligands, and 5 out of 6 downstream transcriptional regulators 
as either promoting or impairing HSPC development in zebrafish, 
mouse or hiPSCs. Of note, only Cebpa or Cebpb did not show an 

Fig. 5 | Downstream pathways of uGR1–T1preHSC interaction. a, Signalling network predicted by CellComm identifying transcriptional regulators 
downstream of cell surface receptors. Ligands are produced by the UGR1 and cell surface receptors are expressed by T1preHSC1. b, Gene Ontology 
processes enriched in regulons (predicted target genes) of the respective transcriptional regulators. The colour and size scales both represent the −log10P 
of the pathway enrichment result (hypergeometric test). The P values were adjusted for multiple comparisons using the Benjamini–Hochberg method. 
c, Gene regulatory network derived from the transcriptional regulators Nr0b2, Stat3, Ybx1, App and Brd7. d, Predicted downstream signalling pathways 
from cell surface receptors leading to transcriptional regulators in HE. The y axis shows cells producing ligands or receptors (on the left and right hand 
side of the cell–cell interaction pair, respectively). The x axis shows inferred signalling pathways, beginning with a cell surface receptor and ending with 
downstream transcriptional regulators in receiving cells. e, Gene Ontology enrichment analysis of the regulons of each transcriptional regulator. The colour 
and size scales both represent the −log10P of the pathway enrichment result. Hypergeometric test. The P values were adjusted for multiple comparisons 
using the Benjamini–Hochberg method. Source numerical data are available in Source data.
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HSPC phenotype in zebrafish MO assays. Supplementary Table 1 
contains a list of knockout phenotypes for genes that we have iden-
tified. Finally, to demonstrate the broad applicability of CellComm 
and illustrate its features to infer intercellular communication from 
spatial transcriptomics data, we applied it to predict spatially resolved 
intercellular communication networks in the tumour microenvi-
ronment, which provided insights into the spatial organization of 
squamous cell carcinoma, including specialized niches and spatial 
distribution of regulon activity of prioritized transcriptional regula-
tors, which can be further functionally validated and exploited, as 
described here for the regulation of HSPC development (Extended 
Data Figs. 6–8, described in detail in Supplementary Note 5).

Discussion
CellComm predicts cell–cell interactions from single-cell data 
to illuminate how such communication activates or represses key 
transcriptional programmes in target cells through reconstruction 
of signalling pathways and gene regulatory networks. To establish 
the effectiveness of CellComm, we assembled a comprehensive 
atlas of the entire AGM ecosystem at a time when HSC precur-
sors emerge through EHT. Our systematic experimental validation 
of cell-extrinsic and cell-intrinsic factors predicted by CellComm 
demonstrated its ability to identify biologically meaningful ligand–
receptor pairs and downstream transcriptional regulators involved 
in haematopoiesis.

Ideally, to robustly infer intercellular communication, down-
stream signalling pathways and regulatory networks within a tis-
sue, an experimental and computational approach is required that 
quantifies and integrates multimodal parameters, including pro-
tein–protein and post-translational modifications, transcriptome, 
epigenome and potentially other molecular features at single-cell 
resolution. Technological limitations, however, restrict the scalabil-
ity to which protein–protein interactions and protein modifications 
are measured at the single-cell level, imposing substantial challenges 
to infer cellular communication from orthogonal single-cell omics 
data. To overcome some of these challenges, CellComm integrates 
scRNA-seq (or spatial transcriptomics), curated large-scale protein 
interaction networks and inference of gene regulatory networks to 
predict how cellular interactions affect downstream transcriptional 
networks through data-driven reconstruction of pathways in cell 
types receiving microenvironmental signals. Despite its limitations, 
CellComm found multiple unknown, highly conserved regulators 
of HSPC emergence, thereby establishing its utility for hypoth-
esis generation from large-scale single-cell datasets and providing 
important insights into networks that drive cell fate. CellComm’s 
capabilities to infer cell–cell interactions from spatial transcrip-
tomics data and our extensive comparative analysis to related 
algorithms demonstrate that CellComm provides an orthogonal, 

innovative and high-resolution approach to infer intercellular com-
munication from single-cell data (Extended Data Figs. 9 and 10, and 
Supplementary Notes 5 and 6).

The work described here sheds light on fundamental principles 
underlying the robustness of haematopoietic development. We 
found that cells in the AGM microenvironment expressed several 
ligands that can interact with a defined set of cell surface recep-
tors in the target population, suggestive of both compensatory and 
complementary mechanisms of action. Moreover, reconstruction 
of downstream signalling pathways from ligand–receptor interac-
tions ultimately leads to a core gene regulatory circuitry controlling 
hallmarks of HSPC identity, indicative of functional redundancy 
that likely confers resilience to dynamic changes in the embryonic 
environment. Finally, unique signalling mechanisms acting through 
non-convergent signalling pathways account for combinatorial gene 
expression regulation and fine-tuning of cell fates during haema-
topoietic development. Together, these observations highlight the 
substantial challenges posed by single gene loss of function analysis, 
and may explain aspects of previously conflicting data in the field 
of developmental haematopoiesis. Such complexity provides addi-
tional opportunities to study developmental biology in vitro and 
direct the differentiation of hiPSCs into target cell types.

Surprisingly, CellComm predicted a role in EHT for App, a gene 
extensively studied in the context of neurodegenerative disease but 
never implicated in haematopoietic development. Beyond the clear 
links with neuronal plaque formation, APP protein is implicated in 
iron export and homoeostasis. Translation of APP itself is regulated 
by intracellular iron levels31 and iron homoeostasis is known to be 
critical for HSC maintenance and self-renewal32. Given our find-
ings that APP inhibition increases HSPC formation in zebrafish and 
mouse embryos, further exploration of how APP normally restricts 
haematopoietic fate from ECs may reveal strategies to improve 
de novo HSPC generation from iPSCs.

The precise recapitulation of developmental pathways to drive 
differentiation in PSCs remains a major challenge in stem cell engi-
neering. Systems biology approaches have been critical to compre-
hensively understand and enhance stem cell differentiation, largely 
by focusing on cell-intrinsic regulatory mechanisms33–36. CellComm 
provides a roadmap for understanding cell communication and dif-
ferentiation within complex cellular ecosystems by shedding light 
on cell-extrinsic factors (ligands or receptors) and their coupling to 
intrinsic signalling pathways and regulatory networks controlling 
cell fate.

online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 

Fig. 6 | Systematic validation of transcriptional regulators. a, WISH for runx1/cmyb in control (DMSO) and stat3 inhibitor (C188-9)-treated embryos 
at 36 hpf. Scale bars, 100 µm. N = 88 embryos per condition, from three biological replicates (clutches). b, CFU potential of cells exposed to Stat3 
inhibitor during EHT. G, granulocyte; M, macrophage; E, erythroid; GM, granulocyte and macrophage; GEMM, granulocyte, erythroid, macrophage and 
megakaryocyte. Bar graphs represent mean ± s.d. N = 3 independent differentiation experiments. c, Decrease in T-cell progenitor formation in the presence 
of STAT3 inhibition. N = 2 independent experiments, experiment 1 with one culture per condition and experiment 2 with five cultures per condition. Bar 
graphs represent mean. d, WISH for runx1/cmyb in control/experimental morpholino-injected embryos at 36 hpf. Scale bars, 100 µm. Number of analysed 
embryos per condition provided in upper right corner. e, WISH for runx1/cmyb in DMSO/app inhibitor-treated embryos or appb wt/het/ko embryos at 36 
hpf. Scale bars, 100 µm. Number of analysed embryos per condition provided in upper right corner. f, Maximum intensity projection of a confocal z stack of 
double FISH for zebrafish appb and runx1 mRNA at 24 hpf. Vasculature is visualized with GFP antibody staining in transgenic embryos. Scale bars, 10 µm.  
g, Increase in CD45+ VE-Cad+ cells in APP inhibitor (2-PMAP)-treated E9.5, E10.5 and E11.5 explant cultures compared with DMSO control. Bars represent 
mean ± s.d. Unpaired t test, E9.5: N = 6 explant cultures per condition, **P = 0.0056, E10.5: N = 7 (DMSO) and N = 8 (APP inhibitor) explant cultures,  
***P = 0.0007, E11.5: N = 4 (DMSO) and N = 3 (APP inhibitor) explant cultures, **P = 0.0021 (E11.5). h, Increase in lineage negative (lin-), Sca-1+, Kit+ cells 
in E14.5 foetal liver (FL) from App KO embryos compared with littermate controls. N = 4 (wild type, WT), N = 14 (HET) and N = 7 (knockout, KO). Embryos 
are from three litters. Mean, 25th–75th percentiles (box) and minimum and maximum (whiskers) values are indicated. The P values from one-way ANOVA 
are adjusted for multiple comparison using Tukey’s multiple comparison test. NS, not significant. P = 0.034 (WT versus KO) and P = 0.0462 (HET versus 
KO). Source numerical data are available in Source data.
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Methods
Mice. Murine housing, maintenance and dissection studies were performed in 
accordance with guidelines set forth by the Boston Children’s Hospital Institutional 
Animal Care and Use Committee (IACUC study no. 000014940). C57Bl/6 mice 
(stock no. 000664) and APP knockout mice (B6.129S7-Apptm1Dbo/J, stock no. 
004133) were purchased from Jackson Laboratory and maintained in a standard 
barrier facility at housing room conditions of 20–23 °C and 35–70% humidity with 
a 12 h light–12 h dark cycle and ad libitum food and water. Both male and female 
mice were used in this study.

Embryo isolation and sequencing. Embryos were collected at E10.25 (66 
embryos) and somites were counted, only processing embryos between 28 and 32 
somite pairs. AGM regions were dissected, pooled and dissociated following Chen 
et al.37. Cells were filtered (40 µm filter) and stained in PBS/2% FBS on ice using 
antibodies listed in Supplementary Table 2. Cells were sorted at 15 psi pressure 
using a 100 µm nozzle on a MoFlo Astrios EQ Cell Sorter (Beckman Coulter). 
Sorted cells were collected into 1.5 ml Eppendorf tubes containing 300 µl PBS/50% 
FBS. Importantly, both enriched cell populations (ECs/T1preHSCs) and the whole 
AGM were processed similarly by FACS to deplete red blood cells and ensure that 
only single, live cells were used for sequencing. Immediately following sorting, each 
cell population was divided across two lanes on a 10x Genomics scRNA-seq chip 
as independent technical replicates to encapsulate cells into droplets. scRNA-seq 
libraries were then prepared per the 10x scRNA-seq v2 protocol. Cells were 
loaded into 10x lanes at cell concentrations to maintain an estimated doublet rate 
below 5%. Final 10x libraries were assayed via an Agilent High Sensitivity dsDNA 
Bioanalyzer, normalized, pooled and shallow sequenced on a MiniSeq, identifying 
10,000 high-confidence cell barcodes in total across all conditions. 10x libraries 
were then renormalized per the distribution of reads/library from the MiniSeq run 
and deep sequenced on a NovaSeq S4 to a depth of 50,000 reads per cell barcode.

scRNA-seq data processing and analysis. Single-cell sequencing data were aligned 
and quantified using the Cell Ranger 2.2.0 Single-Cell Software Suite against the 
mm10 mouse reference genome (version mm10-1.2.0) provided by Cell Ranger. 
Cells with fewer than five detected genes were removed. Genes expressed in fewer 
than five cells were also removed. After quality control, our dataset was composed 
of 9,492 single cells with a median of 2,488 genes detected per cell. Of the 9,492 
cells, 268 cells come from the T1preHSC gate, 2,395 cells from the EC gate and 
6,829 cells from the random sampling of the AGM niche. We used CellRouter to 
perform quality control and dimension reduction, identify gene signatures and 
reconstruct the EHT differentiation trajectory.

Cell type annotation. We used marker genes of ECs (Cdh5 and Kdr), T1preHSCs/
HSCs (Hlf, Procr and Runx1), sclerotome (Meox1, Pax1 and Pax9), dermomyotome 
(Meox1, Pax3 and Pax7), myoblasts (Myf5 and Myod1), UGRs (Wt1 and Six2), 
mesonephros (Gata3 and Cited1), neural tube (Sox1 and Sox2), neural crest (Foxd3 
and Sox10), motor neurons (Robo2 and Slit3), hindbrain (Lhx5 and Neurog1), 
macrophages (Cx3cr1 and Ccl3) and mesenchymal stem and progenitor cells 
(Pdgfra, Tbx3 and Hoxc10) to catalogue the diversity of cell types constituting the 
AGM region. Interestingly, germ cells (Pou5f1, Kit, Pecam1 and Sox2) were captured 
in the EC FACS gate, while cluster 14 was an undefined cell type (Fig. 1b,c).

CellComm. CellComm is described in Supplementary Note 1. A step-by-step 
protocol to apply CellComm to spatial transcriptomics data is available in Nature 
Protocol Exchange38.

Trajectory analysis and gene regulatory network inference. Trajectory analysis 
was performed using CellRouter as previously described. For cell cycle analysis, 
we calculated signature scores using a curated list of G2M and S genes, and plotted 
these signature scores along the CellRouter trajectory. We used our previously 
developed algorithm, the Context of Likelihood of Relatedness, especially the 
modified version published with CellNet33,39, to reconstruct gene regulatory 
networks from the data.

Pathway enrichment analysis. We used the package clusterProfiler with standard 
parameters. Briefly, as input we used either ligands or receptors identified by 
CellComm or the regulons of each predicted transcriptional regulator. When 
performing Gene Ontology analysis with clusterProfiler, the function enrichGO 
will use all genes in the database as a background. The number of genes used 
as input varies depending on the number of ligand–receptor pairs identified, or 
the size of the associated regulons of each transcriptional regulator. We consider 
pathways with adjusted P values <0.05 statistically significant, and those are shown 
in figures.

hiPSC culture and differentiation. HE differentiation from hiPSCs was 
induced after one passage on murine embryonic fibroblasts before embryoid 
body (EB) formation. Colonies were detached using collagenase IV and seeded 
into low-attachment dishes (Corning) in aggregation medium40. Twenty-four 
hours later, basic fibroblast growth factor (bFGF; 5 ng ml−1) was added. On day 
2, medium was changed to aggregation medium supplemented with bFGF (5 ng 

ml−1), BMP4 (10 ng ml−1), CHIR99021 (3 µM) and SB431542 (6 µM). On day 3, 
medium was changed to EB medium (Stempro-34; Thermo Fisher Scientific) 
supplemented with ascorbic acid (1 mM), holo-transferrin (150 µg ml−1) and 
α-monothioglycerol (0.4 mM)). On day 6, medium was changed to EB medium 
supplemented with bFGF (5 ng ml−1), vascular endothelial growth factor (15 ng 
ml−1), interleukin (IL)-6 (10 ng ml−1), IL-11 (5 ng ml−1), insulin-like growth factor 
1 (25 ng ml−1), stem cell factor (50 ng ml−1) and erythropoietin (2 U ml−1). EBs were 
collected on day 8 and dissociated first with trypsin/EDTA, then with collagenase 
IV. HE was enriched by magnetic-activated cell sorting for CD34+ cells (Miltenyi). 
HE was plated onto Matrigel (Thermo Fisher Scientific) coated dishes in EHT 
medium (EB medium + BMP4 (10 ng ml−1), bFGF (5 ng ml−1), IL-3 (30 ng ml−1), 
IL-6 (10 ng ml−1), IL-11 (5 ng ml−1), insulin-like growth factor 1 (25 ng ml−1), 
vascular endothelial growth factor (5 ng ml−1), stem cell factor (100 ng ml−1), 
erythropoietin (2 U ml−1), thrombopoietin (30 ng ml−1), FMS-like tyrosine kinase 
3 ligand (10 ng ml−1), Sonic hedgehog (20 ng ml−1), angiotensin II (10 µg ml−1) 
and losartan (100 µM). Throughout EB and EHT differentiation, cells were kept 
at 5% CO2/5%O2/90% N2 environment. YBX1 CRISPRi lines have been generated 
following the protocol provided in ref. 41.

T-cell differentiation. Magnetic-activated cell sorting purified, hiPSC 
derived-CD34+ haemogenic ECs (1–1.5 × 104) were seeded on individual wells of 
a 96-well plate and induced to differentiate into pro-T cells using StemSpan T-cell 
generation kit (#09940, StemCell Technologies) following the manufacturer’s 
instructions. Cells were treated with DMSO or stat3 inhibitor (1 µM and 10 µM) on 
day 1 of differentiation, and CD5+ CD7+ pro-T cells were detected after 2 weeks of 
differentiation.

CFU assay. At d8 + 7 of hiPSC-derived EHT culture, floating cells were 
collected and between 1,000 and 5,000 cells were plated into serum-free 
methylcellulose-based medium with recombinant cytokines (SF H4636) on 3.5 cm 
dishes in a humidified chamber inside the incubator. Colonies were scored blindly 
after 12–14 days.

Mouse embryo explant culture. Caudal parts of E9.5–E11.5 embryos from 
wild-type C57Bl/6 mice (The Jackson Laboratory, stock no. 000664) harbouring 
the para-aortic splanchnopleura or AGM region were dissected and cultured for 
72 h on Durapore membrane filter paper at the air–liquid interface. Filter paper 
was floating on top of MyeloCult M5300 medium supplemented with 10 µM 
hydrocortisone succinate and penicillin–streptomycin.

Foetal liver flow analysis. Homozygous APP knockout mice (The Jackson 
Laboratory, stock no. 004133) were mated with wild-type C57Bl/6 mice (The 
Jackson Laboratory, stock no. 000664) to obtain heterozygous animals. For foetal 
liver dissection, timed matings from both heterozygous female and male mice 
were performed and pregnant females were sacrificed on E14.5. Foetal livers were 
collected and dissociated into a single-cell suspension by passing them through 
a 23 G needle. Red blood cell lysis was performed for 20 min on ice followed by a 
wash and antibody staining (for antibodies, see Supplementary Table 2).

Zebrafish husbandry. Zebrafish were maintained in accordance with Beth 
Israel Deaconess Medical Center and Boston Children’s Hospital Institutional 
Animal Care and Use Committee protocols (protocol number 00001259). 
Translation-blocking morpholinos were obtained from Gene Tools, and injected 
into one-cell-stage zebrafish oocytes (for morpholino sequences and injection 
amounts, see Supplementary Table 3). Chemical treatments were performed 
in six-well plates, from 14 hpf to 36 hpf using ≤30 embryos per well, with 
the indicated amount of compound administered in 5 ml E3 fish medium. 
Whole-mount in situ hybridization (WISH) analysis of runx1 and cmyb expression 
was performed using published probes and protocols. For fluorescence in situ 
hybridization (FISH), endothelial enhanced green fluorescent protein (EGFP) 
in Tg(kdrl:EGFP)s843 embryos was detected with rabbit anti-green fluorescent 
protein (GFP) antibody and goat anti-rabbit AF647 secondary (Supplementary 
Table 2). FACS analysis of HSPC numbers was performed at 48 hpf in embryos 
carrying the Tg(kdrl:mCherry)s916 and Tg(cmyb:EGFP)zf169 transgenes. In 
brief, double-transgenic embryos (five embryos per sample, with a minimum 
eight biological replicates from at least two experiments) were dissociated in PBS 
containing 0.5 mg ml−1 Liberase (Roche) at 34 °C for 2 h with gentle agitation and 
manual pipetting. Filtered cells were resuspended in 1× PBS, labelled with 5 nm 
SYTOX Red (Life Technologies) as a live/dead stain, and the number of live GFP+/
mCherry+ cells quantified using a BD LSRFortessa cell analyser and FlowJo 10.4.2 
software (Tree Star).

Statistics and reproducibility. Flow cytometry, quantitative PCR with reverse 
transcription (RT–qPCR) and cell culture experiments were analysed with Prism9 
(version 9.3.1) software (GraphPad). Figure legends indicate the statistical test used 
in each experiment. No statistical method was used to predetermine sample size. 
No data were excluded from the analyses. The experiments were not randomized. 
Where indicated, investigators were blinded to allocation during experiments 
and outcome assessment. For runx1/cmyb in situ hybridization experiments in 
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zebrafish embryos, at least 20 embryos from a minimum of two independent 
clutches were analysed per treatment condition and/or genotype, with scoring 
independently confirmed. Stained embryos were compared with stage-matched 
sibling or timed-mating controls, across multiple replicate clutches. Expression 
intensity was qualitatively categorized as high, medium or low, relative to the 
median staining pattern of the control group for a given clutch. At 36 hpf, for 
runx1/cmyb expression, a score of ‘high’ reflects continuous aortic signal with a 
consistent thickened pattern, reflective of numerous cell clusters or budding cells; 
‘medium’ denotes a pattern of distinct cell budding/clusters, with continuous 
aortic signal; and ‘low’ indicates a spotty/ discontinuous aortic staining pattern. 
Distribution graphs represent combined totals for each expression category from 
all embryos scored, across clutches; images were selected from matched embryos 
within a single experimental replicate to be representative of the most abundant 
expression pattern for each treatment or condition.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The processed and raw scRNA-seq data supporting the findings of this study have 
been deposited in the Gene Expression Omnibus under accession code GSE160526. 
We re-analysed publicly available datasets from the following accession numbers: 
GSE137117 and GSE144240. Reference genome data for scRNA-seq analyses were 
downloaded from https://support.10xgenomics.com/single-cell-gene-expression/
software/downloads/2.2. All other data supporting the findings of this study are 
available from the corresponding authors on reasonable request. Source data are 
provided with this paper.

Code availability
CellComm and CellRouter are available through the Framework for Unified 
Single-Cell Analysis (FUSCA) R package available at https://github.com/edroaldo/
fusca. We also provide a web resource to run CellComm and other algorithms at 
http://hematopoieticniches.com.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Gating strategy and identification of the hemogenic endothelium population. a, Single, live, non-red blood cells 
(7-AADnegativeTER119negative) were sampled. b, Gating strategy for isolation of endothelial cells (EC) and type 1 preHSCs (T1preHSCs). Cells gated in A 
were further gated on VE-Cadherin+CD31+CD45negativeCD41negativeKITlow/+ for EC and VE-Cadherin+CD31+CD45negative CD41lowKITlow/+ for T1-preHSC. c, 
tSNE analysis of the entire AGM ecosystem data color-coded by sample replicates. d, tSNE analysis of the entire AGM ecosystem data color-coded by 
transcriptional clusters. e, Proportion of replicates in each transcriptional cluster. f, tSNE analysis of sorted endothelial cells (ECs) and immunophenotypic 
T1preHSCs colored-coded by transcriptional clusters. g, Proportion of sorted cells (ECs, T1reHSCs) across transcriptional clusters. h, Manual cluster 
annotation based on transcriptional clusters and the sample of origin. i, Gene expression distribution of selected EC, HE (hemogenic endothelium), and 
T1preHSC genes. The middle line in the box plot indicates the median. The lower and upper hinges correspond to the 25th and 75th percentiles. Whiskers 
show min to max. Data beyond the whiskers are ‘outlying’ points and are plotted individually. Source numerical data are available in source data.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Experimental validation of ligands and receptors. a, Whole-mount in situ hybridization (WISH) for runx1/cmyb in control and 
itgb3b morpholino-injected embryos at 36 hpf. Scale bar, 100 µm, N = 23 embryos (control) and N = 26 embryos (itgb3b morpholino). b, Representative 
flow plots for tested surface receptors on hemogenic endothelial cells from hiPSCs (HE, CD34+CD45−, day 8) and Hematopoietic cells (CD34+CD45+, day 
8 + 7), pre gated on live, single cells. c, qPCR confirming significant reduction of CD93 transcript 48 h after siRNA transfection. Bars represent mean + /- 
SD. N = 4 independent EHT cultures. Paired t-test, **p = 0.0065. d, Flow cytometric analysis of CD93 surface expression 48 h after siRNA transduction. 
Bars represent mean + /- SD. N = 3 independent differentiation experiments. Paired t-test, one-tailed, *p = 0.0261. e, CFU assay from d7 floating cells 
after hiPSC-derived EHT with and without CD93 siRNA KD. Bars represent mean + /- SD of N = 6 assays. f, WISH timecourse for zebrafish mfap2 across 
the window of EHT. Scale bar 500 µm. g, Maximum intensity projection of a confocal z-stack of double fluorescent in situs for zebrafish mfap2 and runx1 
mRNA at 24 hpf. Vasculature is visualized with GFP antibody staining in transgenic embryos. Yellow arrowhead indicates position of cross section. Scale 
bars 50 µm, 25 µm and 10 µm. h, Viability and quantification of floating, hematopoietic cells at d8 + 7 of endothelial to hemogenic transition at increasing 
concentrations of recombinant human MFAP2. Mean + /- SD is plotted, N = 6 independent differentiation experiments. i, Representative flow plots (left) 
and violin plots (median and quartiles) for CD34 and CD45 staining of floating hematopoietic cells after hiPSC derived EHT culture in the presence of 
increasing recombinant human MFAP2 concentrations (N = 6 independent experiments). RM One-way ANOVA, p-values have been adjusted for multiple 
comparison using Dunnett’s test, **p = 0.0029. Source numerical data are available in source data.
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Extended Data Fig. 3 | Application of CellComm to other cell-cell interactions. a, UMAP analysis of scRNA-seq of E + HE + IAC sorted populations from 
E10.5 mouse embryos. b, Inferred intercellular communication network. c, Top ligand-receptor pairs across selected cell types prioritized by CellComm. 
d, Reconstructed signaling pathways connecting cell surface receptors to TRs across reported cell-cell interactions. e, Predicted downstream signaling 
pathways from cell surface receptors leading to transcriptional regulators in neuron subtypes upon interaction with macrophages. f, Gene ontology 
enrichment analysis of the regulons of selected transcriptional regulators identified in e. The color and size scales both represent the -log10 (P value) of 
the pathway enrichment result. AE: arterial endothelial cell. VE: ventral endothelial cell. Source numerical data are available in source data.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Further prioritization of transcriptional regulators. a, The endothelial-to-hematopoietic transition trajectory reconstructed by 
CellRouter using sorted ECs and T1preHSCs. b, Transcriptional regulators predicted to be important for the cell state transitions reported in the x-axis, 
for example EC.HE means the differentiation trajectory from EC to HE. c, Gene expression distribution of genes selected for experimental validation. 
The middle line in the box plot indicates the median. The lower and upper hinges correspond to the 25th and 75th percentiles. Whiskers show min to 
max. Data beyond the whiskers are ‘outlying’ points and are plotted individually. d, Kinetic profiles of selected genes along the CellRouter trajectory from 
endothelial cells (ECs) to the T1preHSC10 state. e, Kinetic profiles of Gfi1b and Gfi1 along the EC to HE differentiation trajectory. f, Expression dynamics 
by qPCR of hematopoietic transcripts RUNX1C and GFI1 as well as CellComm predicted candidate regulators APP and YBX1. N = 4 (d1), N = 6 (d4), N = 5 
(d7) independent EHT cultures, N = 2 independent CB CD34 + donor samples. Bar graphs represent mean. g, Kinetic profiles of selected genes along 
the CellRouter predicted EHT trajectory using the dataset generated by1. h, Increase in APP and YBX1 expression upon ITGB3 inhibition in hiPSC-derived 
HSPCs. N = 6, from 3 independent cultures. Bar graphs represent mean + /- SD. i, Cell cycle signature scores along the CellRouter trajectory from EC to 
the T1preHSC10 state. j, Clustered kinetic profiles, which group genes with similar gene expression trends along the reported CellRouter trajectory. k, 
Gene ontology enrichment of gene sets in each kinetic cluster identified in l. The color and size scales both represent the -log10 (P value) of the pathway 
enrichment result. Hypergeometric test. The p-values were adjusted for multiple comparisons using the Benjamini-Hochberg method. Source numerical 
data are available in source data.

NATuRE CELL BioLoGy | www.nature.com/naturecellbiology

http://www.nature.com/naturecellbiology


Technical RepoRTNAturE CEll BIOlOgy

Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Experimental validation of transcriptional regulators. a, Stat3 inhibitor dose-response curve on runx1/cmyb expression in zebrafish 
embryos treated from 14-36hpf. b, Representative flow plots for CD34 and CD45 staining of floating hematopoietic cells after hiPSC derived EHT 
culture in the presence of increasing STAT3 inhibitor concentrations. Bar graphs represent mean + /- SD. Ordinary One-way ANOVA, Dunnett’s multiple 
comparisons test, N = 5, from 4 independent cultures. c, Gating strategy on positive control samples (CB MNC) and representative flow plots of anti-CD5 
and anti-CD7 stained cells, 14 days in T cell differentiation culture in the presence of indicated STAT3 inhibitor concentrations. d, No decrease in viability 
(DAPI negativity) in hiPSC-derived EHT cultures treated with a STAT3 inhibitor. Mean + /- SD is depicted. N = 4, from 3 independent differentiation 
experiments. e, Phenotypic distribution plots of runx1/cmyb + staining in 36hpf zebrafish embryos after control and experimental morpholino injection. 
N = 42 and 46 (ctrl MO and cebpa MO) and N = 51 and 53 (ctrl MO and cebpb MO) from two independent experiments each. Of note, ybx1 morphants 
displayed severe embryonic toxicity at doses as low as 1 ng, which prevented further analysis in zebrafish. f, qRT-PCR verifying YBX1 knockdown after 72 h 
in dox inducible hiPSC derived HE carrying a dCAS9-KRAB fusion protein and sgRNAs against YBX1. Bars represent mean + /- SD. N = 3 independent 
cultures, unpaired t-test, p = 0.0115. g, CRISPRi of YBX1 does not affect the percentage of CD34 + CD45 + cells. N = 2 independent sgRNAs. Data and 
mean is plotted. h, Reduction of CFU potential upon CRISPRi-mediated reduction of YBX1 expression in hiPSC derived HSPCs. Bar graphs represent 
mean. N = 3 sgRNAs for NTC, N = 2 sgRNAs for YBX1. i, Reduced lymphoid differentiation potential (N = 4 independent cultures) upon CRISPRi-mediated 
reduction of YBX1 expression in hiPSC derived HSPCs. ****p < 0.0001, ***p = 0.0001. Bar graphs represent mean + /- SD. j, Representative flow cytometric 
plots of nascent preHSCs (VE-CAD + CD45 + ) in DMSO or APPi-treated E9.5 explant cultures. k, Quantification of phenotypic T1- and T2-preHSCs in 
control E10.5 AGM explant cultures (N = 9) or cultures treated with APP inhibitor (N = 8). Bars represent mean + /- SD. Unpaired t-test, two-tailed, T1-
preHSCs p = 0.0722, T2-preHSCs p = 0.0258. l, Representative flow cytometric plots of E14.5 fetal liver samples from APP wild type (wt), heterozygous 
(het) and knockout (ko) embryos pregated on single, live, lineage negative cells. Source numerical data are available in source data.
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Extended Data Fig. 6 | CellComm infers cell communication from spatial transcriptomics data. a, Transcriptional clusters overlaid on the tissue image. 
Only spots are shown. c, Probabilistic transfer of annotations from a reference cSCC cell atlas to the spatial transcriptomics data, c, Probabilistic scores 
for a Tumor Specific Keratinocyte (TSK) population overlaid on the tissue image. d, Spots color-coded by niche identity overlaid on the tissue. Only spots 
are shown. e, left panel: number of ligand-receptor interactions co-expressed between reported cell types; middle panel: spatial proximity between 
niche centroids in the tissue image; right panel: interaction score taking into account the number of ligand-receptor interactions and the co-localization 
of niche centroids in the tissue image. f, Selected niches with higher interaction scores overlaid on the tissue image. g, Ligand-receptor pairs mediating 
crosstalk between the tumor microenvironment (TME) and the tumor cells. h, Spatially resolved expression of selected ligand-receptor pairs identified by 
CellComm. Source numerical data are available in source data.
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Extended Data Fig. 7 | CellComm analysis at spatial subcluster resolution. a, Subclustering of niche identities based on spatial information, showing 
spatial subclusters of tumor-specific keratinocytes (TSK), the fibrovascular niche identified, as well as spots classified as lymphoid cells. b, Number of 
ligand-receptor pairs co-expressed between spatial subclusters (left panel); spatial proximity between subcluster centroids of reported niches (middle) 
and interaction score taking into account the number of ligand-receptor pairs and spatial distance of subclusters. Source numerical data are available in 
source data.
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Extended Data Fig. 8 | Signaling processes in the tumor microenvironment. a, Ligand-receptor pairs mediating interactions between TSK spatial 
subclusters and the fibrovascular niche (left) as well as the downstream transcription factors in the fibrovascular niche identified by CellComm (right). 
b, Ligand-receptor pairs mediating interactions between the fibrovascular niche and the TSK spatial subclusters (left) as well as the downstream 
transcriptional regulators in tumor cells identified by CellComm. c, Gene ontology analysis of the regulons predicted to be controlled by the reported 
transcriptional regulators. Hypergeometric test. The p-values were adjusted for multiple comparisons using the Benjamini-Hochberg method. d, Signature 
scores for TSKs, demonstrating spatial localization of this tumor-specific population, as well as signature scores calculated from the regulons of the 
reported transcriptional regulators. Source numerical data are available in source data.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Conceptual and practical comparison of CellComm to related algorithms. Conceptual design of CellPhoneDB, NicheNet and 
CellComm. a, CellPhoneDB infers intercellular communication based on ligand-receptor pairs. b, NicheNet uses prior knowledge of signaling pathways 
and regulatory interactions to build a model to predict which ligands regulate expression of target genes, such as differentially expressed genes or any 
other gene set of interest. c, CellComm infers intercellular communication by exploring co-expression patterns of ligand-receptor pairs across cell types. 
Then, CellComm weights a large-scale protein interaction network based on cell type-specific co-expression measurements derived from the scRNA-seq 
data. CellComm implements an optimization algorithm to search for paths connecting cell surface receptors to downstream transcriptional regulators and 
prioritizes signaling pathways and transcriptional regulators based on the statistical enrichment of the regulons of each transcriptional regulator on cell 
type-specific signatures. The predicted regulons are identified by gene regulatory network reconstruction from the scRNA-seq data. TR = Transcriptional 
Regulator. d, CellComm analysis showing predicted signaling pathways connecting cell surface receptors in the T1preHSC1 subset to downstream 
transcriptional regulators. e, NicheNet analysis showing which ligands are predicted to regulate the expression of T1preHSC1 signature genes (predicted 
target genes). f, The Venn diagram of the downstream transcriptional regulators identified by CellComm and target genes identified by NicheNet shows no 
overlap, demonstrating the orthogonal approach to cell-cell communication implemented in CellComm. g, Ligands and receptors identified by NicheNet. h, 
Overlap between ligands and receptors identified by CellComm and NicheNet. Genes in bold were experimentally validated in our study (hypergeometric 
test). Genes not in bold are known genes involved in hematopoiesis. Source numerical data are available in source data.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Comparison of CellComm to CytoTalk and CellPhoneDB. a, Ligand-receptor interactions predicted by CellComm for the UGR1-
T1preHSC1 interaction. b, Ligand-receptor interactions predicted by CytoTalk for the UGR1-T1preHSC1 interaction. c, Overlap of ligands/receptors 
identified by CellComm and CytoTalk. Genes in bold were experimentally validated in our study. d, Overlap of downstream genes predicted by CellComm 
and CytoTalk. e, Overlap of transcriptional regulators predicted by CellComm and transcriptional regulators in the downstream CytoTalk subnetwork 
(hypergeometric test). f, Mean expression of ligands and receptors identified by CellComm and CytoTalk. g, Cell-cell interaction network inferred 
by CellPhoneDB using the AGM scRNA-seq data generated in this study. h, Overlap of ligands/receptors identified by CellComm and CellPhoneDB 
(hypergeometric test). Genes in bold were experimentally validated in our study. Genes not in bold are known genes involved in hematopoiesis. i, Ligand-
receptor pairs identified by CellPhoneDB in the AGM scRNA-seq data. Source numerical data are available in source data.
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