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ABSTRACT

Synthetic gene networks can be used to control
gene expression and cellular phenotypes in
a variety of applications. In many instances,
however, such networks can behave unreliably due
to gene expression noise. Accordingly, there is a
need to develop systematic means to tune gene
expression noise, so that it can be suppressed in
some cases and harnessed in others, e.g. in
cellular differentiation to create population-wide
heterogeneity. Here, we present a method for con-
trolling noise in synthetic eukaryotic gene expres-
sion systems, utilizing reduction of noise levels by
TATA box mutations and noise propagation in
transcriptional cascades. Specifically, we introduce
TATA box mutations into promoters driving TetR
expression and show that these mutations can be
used to effectively tune the noise of a target gene
while decoupling it from the mean, with negligible
effects on the dynamic range and basal expression.
We apply mathematical and computational
modeling to explain the experimentally observed
effects of TATA box mutations. This work, which
highlights some important aspects of noise propa-
gation in gene regulatory cascades, has practical
implications for implementing gene expression
control in synthetic gene networks.

INTRODUCTION

One of the primary aims of synthetic biology is to design
artificial gene circuits for biotechnological, industrial and

medical applications, by utilizing our understanding of
natural gene networks, their regulation and the resulting
cellular phenotypes. From constructing small-scale gene
circuits in microbes (1–8) and coordinating cell population
behavior (9,10), to the development of programmable cells
(6,11–13) and the metabolic engineering of microbes for
biofuel production (14,15), the last decade has witnessed
a broad range of advances towards a fuller realization of
this aim.

Relevant biochemical parameters and component
properties within a given network design, including
binding and dissociation rates, degradation rates,
strength of promoter repression and basal expression
levels have been used in computational models to predict
and explain average gene expression levels conferred by
synthetic gene circuits in engineered cell populations
(1,2,16). However, in order to engineer predictable
behavior through an artificially constructed gene
network, the synthetic biologist must consider that cells
form populations, implying the necessity of controlling
‘demographic’ aspects of gene expression. While the
mean gene expression (measured over the cell population)
plays a dominant role in synthetic and natural systems, the
level of variability or noise in the expression of key
proteins can also significantly affect the performance of
synthetic gene networks as well as population fitness (17).

Noise or variability is a fundamental, inherent aspect of
gene expression, and can often be attributed to the small
number of molecules involved in key reactions (18–22),
such as in transcription (23), chromatin remodeling (24),
transcription reinitiation complexes (24,25) or the process
of translation (26). Often this unpredictable feature
can give rise to significant heterogeneity in gene expression
across populations of cells, leading to population-wide
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phenotypic variation which affects differentiation (27–33),
fitness (25,34–38) and may even enhance evolvability (39).
Cells have evolved to suppress or amplify this inherent
variability (40) through feedback loops (7,8,41–46),
regulated protein degradation (47), gene dosage
(20,33,45,48,49) and noise filtering within long
cascades (50).

Gene expression noise may have unintuitive and impor-
tant effects on population fitness, signal propagation and
the functional reliability of artificial gene circuits (2).
Accordingly there is a need in the synthetic biology com-
munity for systematic means to tune and control gene
expression noise. Ideally, such noise-control mechanisms
should be relatively straightforward to implement, allow
for the control of noise levels independently of the mean
and be free of undesirable pleiotropic effects.

Here, we present such a method for controlling noise
in synthetic eukaryotic gene expression systems, utilizing
the reduction of noise levels by TATA box mutations
(24,25) and noise propagation in transcriptional cascades
(21,51–53). Specifically, we establish five different yeast
strains, each carrying either the wild-type or a mutant
TATA box in the GAL10 promoter controlling expression
of the TetR repressor in Saccharomyces cerevisiae.
Overall, including these TATA box mutations resulted
in significant reductions in gene expression noise from
the downstream tet-regulated GAL1 (T123) promoter, as
measured by flow cytometric analysis of yEGFP reporter
expression. Furthermore, this reduction in noise was
achieved without significant loss of repression of the
downstream promoter while in the fully repressed state,
thus maintaining as broad a dynamic range of gene
expression as possible. We apply a recently developed
modeling framework to explain and predict the experi-
mentally observed changes in the mean and noise of
reporter gene expression, thereby expanding our under-
standing of noise propagation in TetR-based gene regula-
tory cascades. Overall, the incorporation of TATA box
mutations within an upstream regulatory promoter
allows for a simple, effective and widely applicable
method for controlling gene expression noise in inducible
gene expression systems and synthetic gene networks.

MATERIALS AND METHODS

Cell strains

For all plasmid construction and amplifications,
Escherichia coli strain XL10-Gold (Stratagene) was
utilized. Saccharomyces cerevisiae parental strain YPH500
[(a, ura3-52, lys2-801, ade2-101, trp1D63, his3D200, leu2D1)
(Stratagene)] served as the parental strain for all experimen-
tal strains constructed. Experimental strains were derived
by transformation of YPH500 by a standard lithium
acetate/carrier DNA/PEG procedure (54) using 20–100ng
of plasmid DNA. Each strain-specific plasmid was
linearized within the GAL1-10 promoter region by AgeI
digestion (New England Biolabs). The TRP1 selectable
marker gene within the plasmids allowed for initial selec-
tion of yeast clones in synthetic drop-out media lacking
tryptophan (SD-TRP). Individual positive clones were

then screened for single integrations at the GAL1-10
promoter region of chromosome II by measurement of
yEGFP expression by flow cytometry, and when necessary,
by PCR of isolated gDNA (55) using TaqDNA polymerase
(New England Biolabs).

Plasmid construction and design of GAL10 promoters

The previously used yeast integrative plasmid pRS4D12
(56) served as the template for PCR-based site-directed
mutagenesis of the TATA box sequence of the GAL10
promoter within this plasmid (Figure 1A). The general
cloning strategy involved PCR amplification of two
products from two sets of primers (Integrated DNA
Technologies). The first set of primers amplified a short
(120 bp) product from the EcoRI restriction site down-
stream of the GAL10 TATA box to the GAL10 TATA
box sequence itself. The primers for this reaction
included the constant forward primer EcoRI-f (50- CCG
CCCTTTAGTGAGGGTTGAATTCG-30) along with a
reverse primer annealing at the GAL10 TATA box,
which contained a single or multiple point mutations
within the TATA sequence, as follows (with TATA box
sequence in bold and point mutations underlined):

10TATAint1-rP [50-P-CACAACATATATGTAAGATT
AGATATG-30];

10TATAint2-r [50-P-CACAACAAATAAGTAAGATTA
GATATG-30];

10TATAsev1-rP [50-P-CACAACATATTAGTAAGATT
AGATATG-30];

10TATAsev2-r [50-P-CACAACAGCTAAGTAAGATTA
GATATG-30].

Additionally, the GAL10 TATA box reverse primer was 50

phosphorylated for subsequent blunt-end ligation reac-
tions. The second set of primers amplified a longer
(556 bp) product from immediately upstream of the
GAL10 TATA box sequence to the BamHI restriction
site downstream of the GAL1 promoter, and thus
amplified the GAL1 promoter region. For this reaction,
plasmid pRS4D12 was used as a template for coupling
the GAL10 TATA box mutations with the GAL1
promoter containing three tetO2 operator sites. The
two constant primers for this reaction were the
50 phosphorylated forward primer 10TATAm-f (50-P-GA
AATGTAAAGAGCCCCATTATC-30) and the reverse
primer BamHI-r (50-AATAGGATCCGGGGTTTTTTC
TCCTTG-30). All PCRs used Pfu Turbo DNA polymerase
(Stratagene) for amplification along with a purchased
dNTP mix (New England Biolabs). Reactions were run
on a PTC-100 Programmable Thermal Controller (MJ
Research). PCR reactions were subsequently gel-purified
using a QIAquick Gel Extraction kit (Qiagen). Following
purification, each PCR fragment was digested with the
appropriate restriction endonuclease (EcoRI for
the GAL10 TATA containing fragment, and BamHI for
the GAL1 promoter containing fragment, all New
England Biolabs). After appropriate digestion, fragments
and plasmid DNA were column-purified using the
QIAquick PCR Purification Kit (Qiagen), and ligated
together overnight at 16�C using T4 DNA ligase (New
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England Biolabs). This ligation product was transformed
the next day into E. coli strain XL-10 Gold (Stratagene)
by heat shock and plated on LB agar plates containing
ampicillin for selection (all Fisher BioReagents).
Escherichia coli cells had previously been made chemically
competent by following standard protocols (57). Plasmid
DNA was recovered from positive bacterial clones by the
QIAprep Spin Miniprep Kit (Qiagen). Mutations at the
GAL10 TATA box were confirmed by sequencing
(Agencourt, MWG Biotech).
This strategy was repeatedly used to create four differ-

ent plasmids, each containing a different mutation at
the TATA box of the GAL10 promoter coupled with
the double tetO2 operator-containing D12 GAL1
promoter (sev1-D12, sev2-D12, int1-D12 and int2-D12).
Additionally, each of these plasmids was used to
create similar sets with the single and triple tetO2
operator-containing GAL1 promoters, S1 and T123 (56).
For this, the TATA box mutant plasmids were digested
with EcoRI and AgeI restriction endonucleases, while the

plasmid pRS4S1 was digested with EcoRI and BamHI.
This produced fragments containing the mutant TATA
GAL10 promoters, which were then gel-purified and
ligated into the similarly digested plasmids pRS4S1 and
pRS4T123, yielding plasmid sets sev1- S1, sev2- S1, int1-
S1, int2- S1, and sev1-T123, sev2-T123, int1-T123 and
int2-T123.

In addition, several control plasmids were constructed
to quantify directly the effect of mutations in the TATA
box of the GAL10 promoter on gene expression from this
promoter. The steps for constructing these control
plasmids are described in the Supplementary Data.

Media and growth conditions

For all transformations, yeast synthetic drop-out plates
lacking tryptophan (SD-TRP) and containing 2%
glucose were used for selective growth. Plates were made
with 6.7 g/l yeast nitrogen base without amino acids
(Sigma), 1.92 g/l yeast SD-TRP (Sigma), 38mg/l adenine

TetO2

TSS

TetO2 TetO2 yEGFP

tetR

TSS

AATAT

GAL10 wt

T123

AATCG

AATAA

ATTAT

TATAT

 GAL10 sev2

 GAL10 int2

 GAL10 sev1

 GAL10 int1

TATAT

ATcTetR

A

B C

WT int1 int2 sev1 sev2
0

50

100

150

M
ea

n 
ex

pr
es

si
on

 (
C

F
U

)

WT int1 int2 sev1 sev2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

WT int1 int2 sev1 sev2
0

0.5

1

1.5

2

2.5

3

3.5

4

Fa
no

 fa
ct

or

Figure 1. (A) Schematic illustration of the design of the GAL10 TATA mutant strains, with T123 as the downstream promoter. (B) yEGFP mean
expression from the GAL10 promoter and (C) yEGFP noise (CV) from the GAL10 promoter measured by flow cytometry. Inset: the noise strength
(Fano factor) closely mirrors mean expression from the GAL10 promoter, due to the quasi-proportionality of the expression mean and standard
deviation from this promoter. Overall, GAL10 TATA box mutations decreased gene expression mean and noise strength, but had little effect on the
CV. The wt, int1, int2, sev1 and sev2 strains are shown in black, blue, cyan, purple and red, respectively. The error bars correspond to standard
deviations calculated from three independent biological replicate measurements.
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(Sigma), 15 g/l agar (Fisher BioReagents), 100ml 20%
stock D-glucose (Fisher BioReagents), and water to
a total volume of 1 l. Media was sterilized by autoclav-
ing for 30min, then poured into round Petridishes,
and cooled. After transformed cells were spread onto
these plates, they were kept in a static incubator at 30�C
for 2–3 days until colonies of sufficient size were detectable.

Liquid cultures for strains used in all experiments
were prepared in SD-TRP medium containing 2%
galactose (Fisher BioReagents). Liquid media was
prepared the same as above for plates, except without
agar and with galactose replacing glucose.

Frozen stocks of all strains were prepared by growing
strains overnight from an OD600 of �0.01 in SD-TRP
containing 2% glucose to a final OD600 of �1. A
1.218ml of this culture was then added to a sterile cryo-
genic vial containing 282 ml of 80% glycerol (final concen-
tration 15%) (Fisher BioReagents) that had been sterilized
with a 0.2 mm filter. Vials were inverted to mix contents
and kept at �80�C for long-term storage.

For experiments involving yEGFP induction from the
GAL1 (or GAL10) promoters, single yeast colonies for
each strain were picked from SD-TRP plates containing
2% glucose and used to inoculate 3ml SD-TRP media
containing 2% galactose. These selected colonies were
then grown overnight at 30�C with 300 r.p.m. orbital
shaking until reaching an OD600 of 1.0–1.5, as measured on
a Tecan SpectraFluor Plus instrument set in absorbance
mode. A triplicate set of 3ml SD-TRP cultures containing
2% galactose and anhydrotetracycline (ATc) was then
inoculated by the initial culture to an OD600 of 0.01 and
incubated overnight at 30�C with 300 r.p.m. orbital
shaking. After 16–20 h, cultures reached an OD600 of
0.5±0.2 and were then assayed for yEGFP expression
by flow cytometry. ATc (ACROS Organics) was kept as
a stock solution of 5mg/ml in ethanol at �20�C. A diluted
working stock of 50 ng/ml (in sterile water) was added to
SD-TRP media for experiments. Wild-type GAL10 strains
S1, D12 and T123 were assayed across a range of 0–250 ng/
ml ATc. Strains with GAL10int2 and GAL10sev2 were
assayed across a range of 0–20 ng/ml ATc, and strains con-
taining GAL10int1 and GAL10sev1 were assayed across a
range of 0–50 ng/ml ATc.

Flow cytometric analysis of gene expression

Following overnight growth at 30�C with shaking,
cultures were taken out upon reaching an OD600 of
0.5±0.2. One milliliter of each induced culture was trans-
ferred into a 1.5ml microcentrifuge tube and centrifuged
at 8000 r.p.m. for 1min. The supernatant was discarded
and the pellet was resuspended in 500 ml of 0.22 mm filtered
PBS (Fisher BioTech, pH 7.4). Samples were then
assayed for yEGFP expression using a Becton Dickinson
FACSCalibur instrument with a 15 mW 488 nm argon-ion
laser and a 515–545 nm emission filter (FL1-H). Voltage
settings used were as follows: P1, E-1; P2, 300; P3, 575; P4,
491; and P5, 834. Additionally, the threshold value for
forward scatter was set to zero. Samples were run on a
low flow rate to maximize resolution of signal from each
cell. Samples were run long enough for collection of total

populations in the range of 105–106 individual cells. Flow
cytometry data files were then analyzed using Matlab (The
MathWorks, Inc.). Analysis of samples was conducted
on cells within a small forward- and side-scatter gate
(35–45� 55–65), allowing for examination of at least
5000 cells of similar size, shape and point in the cell
cycle. The mean and standard deviation were calculated
for each sample. Finally, the noise (coefficient of variation,
CV) was computed for each sample as the standard devi-
ation normalized by the mean.

Inducer pulse time-course experiments

A single colony for each strain was used to inoculate 3ml
SD-TRP media containing 2% galactose, and grown over-
night as before. Following overnight growth, this culture
was used to inoculate six different sets of 3ml SD-TRP
liquid cultures, each set in triplicate (18 total cultures) at
an OD600 of 0.01. The six triplicate sets of cultures were
then grown overnight again until reaching an OD600 of
0.6±0.2. At this point, ATc at a concentration of
50 ng/ml was added to each of six different sets of tripli-
cate yeast cultures, each grown at 30�C with shaking with
ATc for 30, 15, 10, 5, 2 and 0min (no ATc added). At the
end of the indicated ATc pulse duration, all cultures were
centrifuged at 8000 r.p.m., and washed in sterile water
twice. Yeast pellets were then resuspended in fresh SD-
TRP media without any ATc. Cultures were then
returned to the 30�C shaking incubator. At various time-
points (0, 1, 2, 4 and 6 h) following the removal of ATc
containing media, 250 ml from each liquid culture was
transferred into a 1.5ml microcentrifuge tube and
centrifuged at 8000 r.p.m. for 1min. The pellet was
resuspended in 500ml of 0.22mm filtered PBS and
examined by flow cytometry as before.

Analytical noise approximations and predictions of
reporter gene expression

Our analytical predictions were based on the system of
equations from (46):

_x ¼ ax � bxy� dx

_y ¼ C� bxy� fy

_z ¼ azFðxÞ þ l� dz

ð1Þ

where x is free intracellular TetR concentration, F(x) is a
Hill function with parameters n and �, y is free intracellular
ATc concentration and z is yEGFP reporter concentra-
tion. Solving this system determines the three unknowns
x, y and z as a function of the molecular parameters ax, az,
b, d, f, l and the control parameter C, which represents the
influx of ATc through the cell membrane. Therefore, the
steady-state solution z(C) represents the dose-response of
the gene regulatory cascade (see the Supplementary Data),
which was fit to the experimentally measured wild-type
dose-response applying the simplex method based on the
Nelder–Mead algorithm in Matlab (MathWorks, Inc.).
We kept the parameter values obtained from nonlinear
fitting unchanged, except the upstream promoter strength
(parameter ax), which was decreased proportional to the
average fluorescence measured when yEGFP expression
was driven by the various GAL10 mutant promoters.
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To obtain analytical noise predictions, we employed
approaches analogous to the fluctuation–dissipation
theorem in statistical mechanics described by Paulsson
(58), which can be used to derive the magnitude of fluctu-
ations in biochemical reaction networks assuming that the
noise is relatively small. This leads to the following
equation for the covariance matrix:

d

dt
� ¼ A� þ �AT

þ�B ð2Þ

where matrix A represents relaxation dynamics to equilib-

rium, defined by aij ¼
@

@ njh i
@ nih i
@t , with nih i representing

the mean concentration of species i; the matrix B repre-

sents randomness of biochemical events, defined
as bij ¼

P

k

vjkvikRk, with vjk representing the number of
j molecules that change in the k-th reaction, at the
macroscopic rate Rk; X is the average cell volume, and
finally, the matrix p represents a matrix of covariances
between variables x, y, z [see the Supplementary Data for
the detailed form of Equation (2) and how it was solved].

Stochastic simulations

Stochastic simulations for wild-type GAL10-controlled
TetR strains were performed based on an augmented
version of the deterministic model [Equation(1)], where
parameters were derived by fitting the theoretical dose–
response function z(C) to the experimental dose-
response, using known constraints on certain reaction
rates, such as TetR-DNA binding/unbinding, TetR-ATc
binding, ATc-membrane diffusion, and RNA and protein
degradation rates. TetR dimerization was assumed to be
much faster than other processes (41,59). The GAL10 and
T123 activation and inactivation rates (a0, �0, a and �)
were fit to reflect observed mean and noise values at max-
imal expression using Paulsson’s equations approximating
protein-level fluctuations driven by underlying promoter
and mRNA fluctuations (58). The upstream GAL10
promoter was modeled as having two states corresponding
to TBP unbound and TBP bound to the TATA box,
respectively. The downstream T123 promoter was
modeled with eight promoter states corresponding to the
binding of 0–3 TetR molecule times the two states
associated with TBP. Using these parameters and the sim-
ulation tool Dizzy (60), 5000 Gillespie simulations (61)
were individually run for a simulated 12 h and used to
predict downstream yEGFP mean and noise (see the
Supplementary Material for full details of rate constants
and the Dizzy model).

RESULTS

Construction of gene expression cascades with
GAL10 TATA mutant promoter sets

We established five different yeast strains (Figure 1A),
each carrying a chromosomally integrated synthetic gene
expression cascade based on the bidirectional GAL10-
GAL1 promoter (23,25,56) to examine the influence of

mutations at the TATA box of an upstream regulator’s
promoter on the expression of the downstream promoter
under its regulation. In each of these gene regulatory
cascades, the expression of the fluorescent reporter
yEGFP could be regulated by the TetR repressor
binding to three tetO2 operator sites inserted into the
GAL1 promoter of S. cerevisiae (renamed to T123)
between the TATA box and the transcription start site
(56). The DNA binding activity of the repressor TetR
(expressed constitutively from the GAL10 promoter)
could be controlled by adding various concentrations
of the inducer ATc to the growth medium. ATc diffuses
into the cells and prevents TetR from binding to the tetO2
sites and repressing yEGFP (Figure 1A) (23,25,56).

The only genetic difference between these yeast
strains was in the TATA box of the GAL10 promoter
controlling tetR expression. Based on the effect of
these mutations on GAL10 expression (Figure 1B), the
GAL10 promoter variants and the strains carrying
them were named GAL10wt (wild type), GAL10int1
(intermediate-1), GAL10int2 (intermediate-2), GAL10sev1
(severe-1) and GAL10sev2 (severe-2), indicating that
the wild type and four mutant TATA sequences were
used. Specifically, the four GAL10 mutants were con-
structed from the wild-type GAL10 TATA box by:
an A!T transversion at position five in int1, a T!A
transversion at position one in int2, an A!T transversion
at position four in sev1, and finally, a TA!GC dou-
ble transversion in sev2 (Figure 1A). We named these
cascades according to the convention [upstream
promoter]� [downstream promoter]; for example,
GAL10sev1-T123 indicates that the GAL10sev1 pro-
moter controlled TetR expression, and the T123
promoter controlled yEGFP expression. Since TATA
box variants in this article always refer to the GAL10
promoter, and since we mainly focus on cascades with
the T123 promoter downstream, in most cases we
removed ‘GAL10’ from the name of the upstream
promoter and dropped the name of the downstream
promoter to simplify notation. For example,
the GAL10sev1-T123 cascade will be simply referred to
as sev1.

In addition to this set of engineered gene regulatory
cascades, a corresponding set of control promoters
were constructed to allow for measurements of gene
expression directly from all five GAL10 promoter
variants. To achieve this, the tetR gene was replaced
by the yEGFP reporter gene in each GAL10 promoter
variant strain. We have also truncated the yEGFP
gene at T123 to a nonfunctional form so that only
expression at GAL10 was measured.

Effect of TATA box mutations on the GAL10
expression mean

Fluorescent reporter gene yEGFP expression was
measured in triplicate by flow cytometry for the five S.
cerevisiae strains, each carrying one of the GAL10
control constructs (Figure 1B) at fully inducing 2%
galactose. As shown in Figure 1B, the mutations in the
GAL10 TATA box had considerable effects on the mean

2716 Nucleic Acids Research, 2010, Vol. 38, No. 8

 at M
edical Library on M

ay 18, 2010 
http://nar.oxfordjournals.org

D
ow

nloaded from
 

http://nar.oxfordjournals.org


of yEGFP expression from the GAL10 promoter. The
wild-type GAL10 promoter (in black) had the highest
expression with an FL1 value of 143.43±6.80 arbitrary
fluorescent units (AFU). As expected based on earlier
work by our group and other groups (24,25,62–64), muta-
tions at the TATA box of GAL10 resulted in either inter-
mediate or substantial reductions in mean expression from
this promoter, prompting the nomenclature of the GAL10
promoters (Figure 1A and B). Specifically, the expression
of the mutant strains were 61.78±4.02, 30.41±1.01,
14.37±0.83 and 14.66±0.33 AFU for int1, int2, sev1
and sev2, respectively, corresponding to a reduction of
57%, 80%, 90% and 90%, compared to the wild-type
GAL10 promoter (Figure 1B).

Effect of TATA box mutations on GAL10
expression noise

In addition to examining the effect TATA box mutations
had on the mean GAL10 expression level, we also
measured their effect on gene expression variability, or
noise (25), of the GAL10 promoter. To quantify the
noise, we calculated the CV for each population sample
as the standard deviation of the population divided by the
population mean, using a narrow forward- and side-
scatter gate to minimize extrinsic contributions from cell
size, cell cycle phase, etc. As seen in Figure 1C, there is
little, but still statistically significant, difference [at
P< 0.01 using Statistica’s ‘multiple comparisons of mean
ranks for all groups’ nonparametric test (65)] in the CV
plotted for all five GAL10 control promoters, except int2
and sev1. Specifically, the measured values for these
control promoters were: 0.162±0.007 for wt (in black);
0.147±0.005 for int1 (in blue); 0.168±0.004 for int2 (in
cyan); 0.169±0.006 for sev1 (in magenta); and
0.179±0.004 for sev2 (in red) (Figure 1C). Contrasted
with the considerable differences in gene expression
mean, the similarity of CV values indicates that the
standard deviations of GAL10 expression (data not
shown) tend to change proportionally with the mean. To
illustrate this proportionality, we calculated the noise
strength (Fano factor) of each GAL10 variant, defined
as the CV multiplied by the standard deviation. Given
the minimal differences in CV at GAL10, the noise
strength was proportional to the mean, and relative
changes in the noise strength closely mirrored the
decreasing means and standard deviations of each
mutant GAL10 promoter (Figure 1B and C).
Specifically, the noise strength values were 3.79±0.24,
1.35±0.15, 0.86±0.03, 0.41±0.02, and 0.47±0.03,
respectively, for the wt, int1, int2, sev1 and sev2 pro-
moters. The decrease in noise strength values due to
increasingly severe GAL10 TATA box mutations
obtained from our gated data are consistent with a
previous study measuring the intrinsic noise strength
of the PHO5 promoter with TATA box mutations in
S. cerevisiae (24).

To explain why the significant variation in mean expres-
sion following GAL10 TATA box mutations result in only
minor differences in noise, we estimated promoter activa-
tion and inactivation rates (a0, �0) by fitting to our data

Paulsson’s formula approximating protein-level fluctua-
tions driven by underlying promoter and mRNA fluctua-
tions (58). The parameters obtained from this fit suggest
that TATA box mutations speed up GAL10 promoter
activation and deactivation, with a stronger effect on the
latter. As a result, the promoter quickly activates, but then
it deactivates even faster so that mean GAL10 expression
is decreased in the TATA box mutants (Figure 1B). The
relatively unchanged GAL10 noise (Figure 1C) can be
explained by a shift in the primary noise source: whereas
slow promoter dynamics generates most of the noise for
the wild-type TATA box, the noise of severe TATA
box mutants originates primarily from the stochastic
processes of protein production and degradation (see
Supplementary Material for a full discussion and derived
rates).
Ultimately, these observations serve as an indirect

estimate of total TetR expression levels from the five
different GAL10 promoters in the subsequent experiments
discussed below where yEGFP expression was measured
downstream, from the tet-regulated T123 promoter.

The effect of GAL10 TATA box mutations on T123
dose-response

T123 basal and maximal expression level. Since basal
expression is an important property of gene expression
systems that experimenters typically strive to minimize,
we examined whether introducing GAL10 TATA
box mutations would increase T123 basal expression
measured at 0 ng/ml ATc (Figure 2A). While we
observed a slight increase in basal expression with the
severity of GAL10 TATA box mutations, the basal T123
expression remained very low for all strains. Specifically,
the expression levels for the wt, int1, int2, sev1 and sev2
strains were 1.75±0.03 AFU, 2.22±0.07 AFU,
2.94±0.03 AFU, 3.73±0.05 AFU and 5.02±0.14
AFU, respectively. To better reflect the change in the
dynamic range, the basal expression levels expressed as a
percentage of the maximum expression level from the syn-
thetic T123 promoter were 0.26% (±0.005), 0.34%
(±0.01), 0.42% (±0.005), 0.55% (±0.008) and 0.73%
(±0.02), respectively. At the same time, the maximum
T123 expression levels at full induction (250 ng/ml ATc)
were practically unaffected by the GAL10 TATA box
mutations (Figure 2B). Taken together, these data
indicate that the GAL10 TATA box mutations have prac-
tically no effect on the dynamic range of expression from
the T123 promoter.

T123 dose-response—increased sensitivity to inducer.
Considering that we have previously measured the dose-
response of the T123 promoter (56), we asked whether we
could predict analytically and computationally the effect
of TATA box mutations in the GAL10 promoter on the
dose-response of the gene regulatory cascade. We applied
a system of three equations in three unknowns [the con-
centrations of the free repressor x, of the intracellular
inducer y and the reporter z; see Equation (1) in the
‘Materials and Methods’ section] that we recently
developed to model tet-inducible gene expression
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systems (46). The dependence of solutions on the control
parameter C (rate of inducer influx into the cell) generates
a theoretical dose–response function z(C) that can be
compared with the experimental dose–response curves.
We learned all the parameters in system [Equation (1)]
by fitting the T123 dose-response measured for the
wild-type GAL10 promoter. Next, we varied parameter
ax, corresponding to the GAL10 promoter strength,
while keeping the rest of the parameters unchanged to
calculate the dose-response z(C) corresponding to the
four GAL10 TATA box mutants. The model predicted
that the dynamic range of the T123 dose-response
should remain practically unaltered, while the induction
threshold (the ATc concentration corresponding to
half-maximal induction) should gradually decrease for
severe TATA mutants. Moreover, the model predicted a
linear dependence between GAL10 promoter strength and
the ATc concentration at which half induction occurred
(see the Supplementary Data).
Indeed, the experimentally measured T123 dose–

response curves shift to the left depending on the
severity of GAL10 TATA box mutations. Strains
with higher GAL10 expression levels have higher induc-
tion thresholds, in agreement with the computationally
predicted dose–response curves (Figure 2C). To quantify
the leftward shift in the T123 dose–response curves,
we estimated the experimental ATc concentration at
which half-maximal induction occurred by linear

interpolation. The resulting values (39.6, 17.2, 6.5, 4.1
and 3.4 ng/ml ATc for wt, int1, int2, sev1 and sev2, respec-
tively) had a nearly perfect linear dependence on upstream
promoter strength, with a correlation coefficient
�=0.9986 (Figure 4A).

In summary, while the TATA box mutations at
the upstream GAL10 promoter controlling tetR expression
do not alter the dynamic range of T123 dose-response
(i.e. they only have a negligible effect on basal expression,
and no significant effect on maximum expression), these
mutations cause a systematic leftward shift in the dose–
response curves, strongly increasing the overall sensitivity
of this synthetic GAL10-T123 expression system to the
inducer ATc.

The effect of GAL10 TATA box mutations on T123
noise levels

Reduction in T123 noise levels. In addition to examining
the effect GAL10 TATA box mutations had on T123mean
levels of expression through the full range of dose-
responses, we also examined their effect on the level of
T123 gene expression noise. Once again, we made theoret-
ical predictions of the T123 expression noise based on the
experimentally measured GAL10 expression mean and
noise. Keeping all of the parameters unchanged for each
GAL10 TATA box mutant, we employed linear noise
approximations based on the fluctuation–dissipation
theorem (FDT) in statistical mechanics (58) to derive the
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Figure 2. Mean yEGFP expression levels from the T123 promoter for different upstream GAL10 TATA box variants. (A) Basal yEGFP expression
means at no induction (ATc=0ng/ml) and (B) fully induced yEGFP expression levels, showing a dynamic range insensitive to the strength of the
upstream GAL10 promoter variant. (C) Experimental and simulated and (D) analytically determined dose-responses at intermediate levels of
induction show a leftward shift and increased sensitivity to ATc with various upstream tetR promoters. The meaning of the colors and the error
bars are the same as in Figure 1.
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magnitude of fluctuations in T123 expression. Taking into
account GAL10 expression mean and noise measurements,
and keeping all parameters unchanged, we used Equation
(2) to calculate yEGFP expression noise from the T123
promoter (see the ‘Materials and Methods’ section). In
addition, we also performed stochastic simulations of a
more comprehensive set of reactions to predict and
explain the effect of GAL10 TATA box mutations on
T123 expression mean and noise (see the ‘Materials and
Methods’ section and Supplementary Data for a more
detailed discussion of these methods). Both methods pre-
dicted noise curves with a peak at intermediate ATc con-
centrations. Moreover, the models predicted that noise
peaks would occur at lower ATc concentrations with
decreasing peak heights as GAL10 TATA box mutations
became increasingly severe (Figure 3A and B).

The experimentally measured noise curves (Figure 3A)
had low noise at zero induction, followed by a sharp
increase in CV at low to intermediate ATc concentrations,
and finally a decrease in CV to a low noise level near full
induction, in agreement with the computational predic-
tions. Moreover, the noise peak position and height also
decrease for various mutant GAL10 TATA box pro-
moters, as predicted, with noise peaks occurring at 20,
11.5, 4.0, 2.5 and 2.0 ng/ml ATc for wt, int1, int2, sev1
and sev2, respectively. The peak height decreases as the
peaks shift leftwards, in consensus with the model,
depending on the severity of the GAL10 TATA box
mutation (Figure 3B).

Noise in yEGFP expression from the T123 promoter
can have contributions from multiple sources (51),
including intrinsic noise, global noise and extrinsic noise
due to cell-to-cell variations in active TetR levels.
Importantly, our yEGFP noise measurements from the
GAL10 promoter (Figure 1C) can only estimate TetR
noise in the absence of inducer, and cannot account for
TetR noise levels when ATc diffuses into cells and gradu-
ally depletes the pool of active TetR dimers. On the other
hand, our computational models explicitly incorporated
active TetR [(species x in Equation (1), see the

’Materials and Methods’ section] and gave us interesting
insights on the origins of downstream fluctuations as noise
propagates through our gene regulatory cascades, while
the TetR repressor is gradually sequestered by ATc.
Starting from constant TetR noise in the absence of ATc
(as observed in Figure 1C), we calculated the mean,
standard deviation and noise of active TetR for the five
GAL10 variants at increasing ATc concentrations. The
results suggest that active TetR means decrease faster
than TetR standard deviations, leading to increasing
repressor noise in all strains as the active TetR pool is
depleted at various ATc concentrations for the five
GAL10 variants (Figure 4B). However, the TetR
standard deviation in the wt strain remains the highest
at all ATc concentrations, followed by the mutants in
the order shown in Figure 1B and C. Consequently, the
wt strain will experience maximal extrinsic repressor noise
when TetR is nearly depleted, explaining the decreasing
noise peak heights for increasingly severe GAL10 TATA
box mutations. Specifically, we predicted that downstream
(yEGFP) peak noise should approximately follow the rela-
tionship maxðCVyEGFPÞ / �

0:434
TetR , which was indeed in

good agreement with our experimental measurements
(see Figure 4C and the Supplementary Data).
In addition to plotting the CV as a function of inducer

concentration, we also examined the noise of each GAL10
TATA box mutant as a function of the mean, obtaining
the mean–noise characteristics shown in Figure 3C. If
these characteristics are nonoverlapping, then they can
be used to decouple gene expression noise from the
mean in two separate cell populations (25,56).
Moreover, these characteristics may provide a fairer and
more concise account of the effect of GAL10 TATA box
mutations since they present simultaneously in the same
graph the mean and noise for each strain. While every
mean–noise characteristic had a peak at intermediate
mean expression levels, the mean–noise characteristics
were clearly nonoverlapping. Therefore, a certain mean
expression level on the horizontal axis corresponds to
different noise levels in various strains. Consequently, by
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Figure 3. Noise of yEGFP expression from the T123 promoter as measured by the CV plotted against inducer (ATc) concentration for
(A) experimental data and simulated results, and (B) analytically derived predictions. (C) CV plotted against experimentally determined mean
yEGFP fluorescence levels. The meaning of the colors and the error bars are the same as in Figure 1. The green line shows where gene expression
mean and noise can be experimentally decoupled, so that noise is changed 5-fold, while mean remains invariant.
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adjusting the inducer concentration, two separate cell
populations can be designed to have identical means,
but different gene expression noises. This effectively
decouples the noise from the mean, since these gene
expression properties can now be tuned independently
from each other in different strains, using appropriate
inducer concentrations, as we have demonstrated
recently (25).
We have shown recently that the number of tetO2 sites

in the downstream promoter play a key role in shaping the
overall dose-response and noise characteristics of the gene
regulatory cascade (56). To further validate that the above
observations are robust with respect to the number of
tetO2 sites in the regulated GAL1 promoter,
we subsequently replaced the triple operator containing
T123 promoter with either the double operator containing
(D12) or the single operator containing (S1) promoter (56)
for each TATA box variant. We measured the
dose-response and noise of the resulting 10 regulatory
cascades by flow cytometry, as described for the T123
promoter. The results (summarized below, and presented

in detail in the Supplementary Data) indicate that the
general effects of GAL10 TATA box mutations are inde-
pendent of the number of tetO2 sites in the target
promoter.

The sets of S1 and D12 dose-responses maintained the
relative leftward shifts and noise reduction as the severity
of TATA box mutations increased, in a manner consistent
with the T123 dose-response. Again, the half-maximal
induction points of these curves had a linear dependence
on GAL10 expression levels (see the Supplementary Data).
The main differences between the sets of five S1, D12 and
T123 dose-responses were that S1 noise consistently
peaked at a higher mean expression level, and had
consistently lower peak CV levels, at around 50% of the
D12 and T123 strains. Perhaps this doubling of peak noise
can be accounted for by the relative steepness of D12 and
T123 compared to S1 promoter response. Comparing
dose-responses across each TATA box mutant, the D12
and T123 promoters had higher levels of noise and S1 had
the least abrupt dose–response curve, as described
previously (56).
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tration necessary for half-maximal yEGFP expression) is plotted against GAL10 promoter strength (estimated by yEGFP expression from the GAL10
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Effect of GAL10 TATA box mutations on the gene
expression response to an inducer pulse

Since synthetic gene circuits and gene expression systems
may need to function in a dynamic environment including
exposure to pulses, step functions, or random inducer fluc-
tuations, we measured the pulse response of regulatory
cascades with various GAL10 TATA box mutations.
Exposing the wt, int1 and int2 TATA box mutant
strains to transient pulses of the inducer ATc, we
examined how the duration of exposure to inducer mole-
cules would affect yEGFP expression during time-course
measurements. Yeast strains harboring these constructs
were initially grown overnight in the absence of the
inducer ATc. Triplicate cultures were then subjected to a
short, transient pulse of ATc at a fixed concentration
slightly higher than the induction threshold for wt
(50 ng/ml) for six different durations (0, 2, 5, 10, 15 and
30min). Following exposure to inducer, cultures were
washed twice and resuspended in fresh media lacking
ATc. These cultures were then assayed for yEGFP expres-
sion from the synthetic T123 promoter over time, begin-
ning at the onset of removal of inducer ATc (0 h) to 1, 2, 4
and 6 h post-removal.

As shown in Figure 5A–C, the GAL10 TATA box
mutations had a strong effect on the population mean of
gene expression response to inducer pulses of various
lengths. Overall, the pulse responses were either flat or
had a peak, suggesting a transient increase in yEGFP
expression, followed by a drop towards full repression.
However, the pulse responsiveness of various GAL10
variants was markedly different. For example, the strain
carrying a wt GAL10 TATA box revealed a negligible or
very minimal response to most of the six different ATc
pulses, except for a slight increase following the 30-min
ATc pulse, where the mean expression level increased
from 2.27±0.04 AFU at 0 hours to a peak expression
of 2.36±0.10 AFU at 2 h post-induction, followed by
a gradual decrease to a mean of 2.17±0.04 AFU at
6 h post-induction (Figure 5A). For ATc pulse lengths of
0–15min, the fluorescent measurements decrease slightly,
which is likely due to yEGFP fluorescent signal or ATc
autofluorescence decaying over time. We observed a
similar, but more pronounced response for the int1
strain, (Figure 5B), indicating that tetR expression from
the int1 promoter was still sufficient to maintain strong
repression of the T123 promoter. We observed a very dif-
ferent result for the int2 pulse response time-course
(Figure 5C). For this TATA box mutant, the population
mean of T123 expression increases significantly in time for
all pulse durations, including pulses of 5min. The pulse
response was especially pronounced for longer pulses,
reaching peak response levels of 148.44±6.63 AFU and
186.31±2.80 AFU at 1 and 2 h post-induction, respec-
tively. Overall, these time-course measurements revealed
an increasing intensity of pulse response with the severity
of GAL10 TATA box mutations.

In order to better understand these experimental pulse–
response trends, we simulated these three strains (wt, int1
and int2) using the model described by Equation (1) (see

the ‘Materials and Methods’ section), incorporating the
parameters derived for the steady-state measurements.
The results of these simulations were in good agreement
with the experimental data (see Supplementary Figure S8),
and suggest the interplay between TetR expression
and ATc influx as the most important mechanism for
explaining the main features of the pulse–response
time-courses. We found that maximal levels of yEGFP
expression depend on the length of time for which the
free intracellular TetR pool is depleted by ATc mole-
cules diffusing into the cell, so that longer pulses or
lower TetR expression result in higher peak downstream
expression. Conversely, the speed of repression following
the transient increase in yEGFP expression is explained
by the rate at which newly synthesized TetR molecules
sequester the free ATc pool remaining within the cell
after transfer, as well as the rate of yEGFP degrada-
tion/dilution. These two relationships thus explain the
observations that the peak height of transient yEGFP
expression is positively correlated with preinduction
time, while both the peak height and the rate of repres-
sion are negatively related to the GAL10 promoter
strength.
In addition to examining the effects of GAL10 TATA

box mutations on the pulse response of gene expression in
TetR-based regulatory cascades, we also examined how
these mutations influenced the level of gene expression
noise (Figure 5D–F). Similar to the mean expression,
cells carrying the wt GAL10 promoter showed no signifi-
cant change in noise levels for ATc pulse lengths below
30min, while the 30min ATc pulse caused an increase in
population heterogeneity. The overall level of gene expres-
sion noise increased slightly for short inducer pulses and
significantly for the 30min ATc pulse in the int1 mutants,
compared to wt (Figure 5E) Finally, a much broader array
of noise levels and population heterogeneity was observed
for the various inducer pulse durations for cells carrying
the int2 promoter construct (Figure 5F), demonstrating
how reduced tetR expression from a more severe TATA
box mutant alters noise-level dynamics upon exposure
to different inducer pulse durations. Specifically, we
observed a CV increase for ATc pulse durations as short
as 2min (Figure 5F), with maximum CV values as high
as 1.26±0.27 at 2 h post-induction. However, in stark
contrast to the other two mutants, we observed very
low noise following the 30min pulse duration
(Figure 5F), as expected based on the active TetR levels
in this strain.
Overall, these noise measurements demonstrate that the

GAL10 TATA box mutations affect transient gene expres-
sion noise following inducer pulses of various durations.
Wild type and int1 noise levels were affected only by the
longest (30min) ATc pulses, while int2 noise levels were
maximal for intermediary (10min) pulse durations,
peaking at 1–2 h post-induction. This unintuitive noise
behavior can most likely be explained as resulting from
TetR depletion being just sufficient to slightly relieve T123
repression in a certain population of cells, thus resulting in
a noise peak.
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Figure 5. Time courses of yEGFP expression mean and noise due to inducer removal after 0–30min of pre-induction in 50 ng/ml ATc. The yEGFP
expression mean for wt (A), int1 (B), and int2 (C), indicates how ATc can more quickly sequester small TetR pools so that transient inducer
sensitivity is increased. The yEGFP expression noise (measured as the CV) for wt (D), int1 (E) and int2 (F) peaks at intermediate time points for all
three strains.
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DISCUSSION

By introducing TATA box mutations into the upstream
(GAL10) promoter of synthetic gene regulatory cascades
and developing a systematic means to control gene expres-
sion noise, we sought to achieve several goals. First, we
aimed to determine the effect of TATA box mutations on
gene expression from the GAL10 promoter itself. Our
second and main goal was to determine how these muta-
tions affect several key population-level gene expression
characteristics, with specific focus on gene expression
noise. In addition to controlling the noise in the expression
of a target gene, we have also considered two characteris-
tics of the dose-response: (i) the basal expression and
(ii) the dynamic range. Our third and final goal was to
examine if the gene expression noise and mean can be
decoupled, e.g. if they can be independently controlled
using our newly engineered gene expression cascades. To
study fitness differences between cell populations due to
noise separately from the effects of the gene expression
mean, these two gene expression properties must be
decoupled, i.e. they should be independently controlled.
These goals were motivated by several recent studies sug-
gesting a fitness benefit due to the population-wide
phenotypic variation introduced by gene expression
noise (25,36).

With these objectives in mind, we constructed three
quintuplets of synthetic gene regulatory cascades based
on the GAL1 and GAL10 promoters of S. cerevisiae.
Each quintuplet consisted of five minimally different
(only by one and two base pairs) TATA box variants of
the GAL10 promoter controlling TetR repressor expres-
sion. The quintuplets differed from each other in the
number of tetO2 operator sites inserted into the GAL1
promoter controlling the expression of the reporter
yEGFP. In addition, we constructed five control strains
expressing yEGFP from the five different GAL10
promoter variants, to measure gene expression directly
from the upstream promoter.

In the control strains, we observed decreases in yEGFP
expression levels due to TATA box mutations in the
GAL10 promoter, which was expected since these point
mutations had been specifically modeled after mutations
previously incorporated in the GAL1 TATA box, where
similar reductions in gene expression were observed (25).
In general, it has long been known that the TATA box can
play a key role in transcription initiation and TATA box
mutations can result in a less efficient promoter with
reduced expression (62,64). While largely consistent with
previous studies in yeast (24,25), the specific base substi-
tutions we introduced at equivalent positions in the
GAL10 TATA box did not produce the same impact on
gene expression, illustrating that a given mutation can
affect individual promoters differently.

In contrast to the significantly lower mean expression in
GAL10 TATA box mutant cells, the GAL10 expression
noises remained low and were similar (but distinct) for
all strains, likely due to two different reasons. First,
growing the cells in 2% galactose-containing medium
ensured constitutive, maximal expression from GAL10 in
our synthetic constructs, lowering the noise. Higher

discrepancies in GAL10 expression noise may be
revealed at intermediate induction, as in our previous
work. Second, slow degradation of yEGFP (used as a
proxy instead of TetR to estimate GAL10 promoter effi-
ciency) filters out fast fluctuations from promoter activa-
tion or mRNA production events, thereby reducing the
CV closer to the baseline. The differences in CV for
GAL10 were small though statistically significant, which
we think is due to different contributions from several
noise sources. Applying a formula that connects protein
noise to the underlying processes (promoter activation/
deactivation and mRNA and protein synthesis and degra-
dation) suggests that rare promoter deactivation events
coupled with strong protein synthesis are the prime
source of noise for the wild-type GAL10 promoter. In
contrast, the main source of noise for severe TATA box
mutants appears to be fast promoter dynamics coupled
with low protein production in these mutants.
Since the main goal of this study was to determine how

GAL10 TATA box mutations affect the ‘demographic’
characteristics of yEGFP expression from the T123
promoter, next we discuss in detail the various aspects
of these findings. Specifically, we focus on yEGFP basal
expression, dynamic range and gene expression noise, all
of which are important if the synthetic regulatory cascades
are to be used for controlling gene expression across a cell
population.
We sought to explain the observed differences in yEGFP

expression through mathematical and computational
modeling. This was necessary to infer since there are no
direct ways to measure inducer-bound TetR separately
from free TetR dimers capable of repressing the T123
promoter. The good agreement between our model and
the experimental data indicate that free TetR levels in
single cells depend on two key molecular factors: the
rate of inducer influx and episodic TetR production con-
trolled by the GAL10 promoter sequence. ATc molecules
entering the cell bind and inactivate free TetR dimers,
depleting the TetR pool capable of repression.
Therefore, once the TetR pool is depleted, new TetR mol-
ecules must be synthesized for repression to be possible.
The GAL10 TATA box mutations determine the periods
of productive and silent promoter states. Importantly, the
inducer molecules dissociate from TetR very slowly
(66,67)—practically never, considering the time scales of
other molecular processes. These considerations, and their
implications from our model, explain most of yEGFP’s
behavior from the downstream T123 promoter.
Our first functionally important finding is that the

severe reductions in TetR repressor levels due to the
GAL10 TATA box mutations did not increase T123
basal expression levels significantly. Strong and tight
repression is often necessary for achieving stable OFF
states in many synthetic gene circuits, inducible switches
and devices (1,2,68–70), and in functional genetics studies
of genes encoding toxic proteins (68,71). We observed a
systematic, but still slight increase in T123 basal expres-
sion following mutations of the GAL10 TATA box con-
trolling tetR gene expression (Figure 2A). Even for the
two most severe GAL10 TATA box mutants (sev1 and
sev2) with approximately 10% tetR production
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compared to wild type, T123 basal expression stayed at
less than 1% of maximal expression. This slight increase in
basal expression suggests that TetR dimers dissociating
from the DNA take longer to replace in TATA box
mutant cells. Nevertheless, TetR is an extremely strong
and efficient repressor that, even in low concentrations,
can reliably shut down the expression of target genes.
Therefore, in the future, synthetic biologists can adjust
gene expression noise by reducing the strength of the
promoter encoding the repressor TetR, without being con-
cerned about changing the basal level of downstream gene
expression.
Maximal T123 expression when fully induced was not

significantly affected by the strength of the tetR promoter
(Figure 2B), indicating that the repressor activity of TetR
molecules was completely abolished by ATc. Therefore,
there was practically no reduction in dynamic range due
to the GAL10 TATA box mutations. This result becomes
important when compared to prior studies, where GAL1
(downstream) TATA box mutant noise reductions were
tied to large reductions of maximum expression (25). In
contrast, in this study, we were able to maintain as broad a
dynamic range as possible from the promoter of interest
(T123) by transferring the TATA box mutations upstream
to the GAL10 promoter. This maintenance of maximal
expression levels and overall dynamic range can be impor-
tant for synthetic gene expression systems, especially in
functional genetics studies or within engineered microbes
that need to produce industrially important protein
products, enzymes and chemicals (14,15) at user-specified
rates.
In view of future applications for population-wide gene

expression control, one of the more important effects of
upstream TATA box mutations is the noise reduction
observed downstream, at the level of the T123 promoter.
This is relevant because high levels of gene expression
noise can have negative effects on the fidelity of informa-
tion flow in synthetic or natural gene networks (2).
Accordingly, several techniques have been employed to
reduce noise in gene expression, including negative
feedback loops (29,41,44,46), alterations of cell volume
(29), temperature (8), coexpression (72) and direct
TATA box mutations (25). While in our case the noise
peaked at some intermediary inducer concentration for
all TATA box mutant strains, we observed a systematic
decrease and leftward shift of the noise peak for increas-
ingly severe TATA box mutants. These results suggest
that a substantial part of the yEGFP noise originates
from fluctuations in free TetR dimer concentrations, and
are consistent with the expectation that upstream noise is
amplified more in the region where the dose–response
curve has the greatest slope (21,51). While most of this
noise is masked in the absence of inducer, free TetR fluc-
tuations are unmasked as ATc influx into the cells
increases and depletes the free TetR dimer pool. At this
point where ATc depletes TetR, the yEGFP noise peak
decreases in increasingly severe TATA box mutants,
which is most likely due to the lower TetR fluctuations
(variance) of TATA box mutants (see Figure 4), as
explained in the Results. Overall, we show that noise in
free (active) TetR strongly affects the expression of the

regulated gene, while the noise of total TetR seems to
have a negligible effect on yEGFP noise. Still, in
addition to noise from active TetR molecules, we
previously showed substantial intrinsic noise contributions
from the downstream promoter itself (25). Slow T123
promoter fluctuations (due to the presence of a consensus
TATA box sequence) may be most prone to respond to
the slow fluctuations of the upstream gene expression,
typical to the wild-type GAL10 promoter. In contrast,
faster upstream fluctuations of TATA box mutant
strains may be filtered out by the slow T123 promoter.
This may give rise to stochastic entrainment of the down-
stream promoter, which could be tested in the future by
mutating both the upstream and downstream TATA
boxes in the regulatory cascade.

Our final goal was to examine whether GAL10 TATA
box variants could be used to decouple the control of
yEGFP expression noise and mean. To achieve this, we
focused on the noticeable reduction in the height of the
gene expression noise peak, in addition to the shift in the
mean yEGFP expression level where peak noise occurred.
Both effects were due to different TetR repressible pro-
moters, indicating a strain-dependent relationship
between the noise and the mean. These shifts and reduc-
tions of maximum noise to higher mean expression levels
were even more dramatic in our S1 single tetO2 operator
GAL1 promoter set, as seen in Supplementary Materials.
Thus, the nonoverlapping mean–noise characteristics can
be used to decouple the mean and noise of gene expression
by preparing cell populations to have identical means, but
different noises of gene expression, as illustrated in
Figure 3C. Such decoupling (25,28,29,36,38) is crucial
for functional genetics studies investigating the effect of
gene expression noise on cell population fitness.
Accordingly, the gene circuits described here can be used
as robust and tunable synthetic noise generators that
control a target protein with prescribed levels of noise
and mean in natural or other synthetic gene networks,
resulting in cell populations with engineered fitness or dif-
ferentiation capabilities. For example, stem cell popula-
tions could be engineered to differentiate at desired
rates, depending on the noise levels of a differentiation
factor, while maintaining a stable stem cell population
by keeping the average expression levels constant.

In addition to our steady-state analysis of this synthetic
gene circuit, our time-course measurements also provide
useful principles for synthetic design, especially pertinent
for natural cellular environments, where input signals
often fluctuate (73) or occur transiently. Our results dem-
onstrate an important design principle involving the
robustness of gene repression against transient input
signals and gene expression variability at steady state.
High expression of TetR repressor protein from the
wild-type GAL10 promoter resulted in robust mainte-
nance of T123 repression in the presence of a strong, but
transient inducer signal input (Figure 5A). At steady state,
this promoter demonstrated the highest overall noise
levels (Figure 3, in black). In contrast, the reduced mean
and variance in TetR expression from the mutant TATA
promoter int2 lead to a weaker repression of T123, which
responded strongly to the short pulses of inducer signal
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(Figure 5C). At steady state, though, this promoter
exhibited significantly reduced gene expression noise
(Figure 3, in teal). These results demonstrate an important
cost-benefit relationship between robustness of repression
during short transient pulses and steady-state variability.
The future designs of synthetic gene circuits, especially
when dealing with fluctuating input signals, will need to
balance these factors in order to achieve optimal
performance.

In conclusion, the use of TATA box mutations in syn-
thetic gene regulation offers a means of improving the
controllability of gene expression across cell populations.
Our findings demonstrate the possibility of improving
noise control with a clear benefit from TATA box muta-
tions, reducing the expression level of repressor proteins
that inhibit expression of a downstream promoter. High
repressor protein expression (in our case, TetR) causes no
significant change in the dynamic range, while strongly
elevating variability in the gene expression of interest.
The introduction of TATA box mutations in the regula-
tory promoters of inducible gene expression systems thus
offers an attractive solution for adjusting the noise of gene
expression independently of the mean. Our method
involves minimal alteration to synthetic gene circuits,
maintains low basal expression of repressed promoters,
and retains the maximum gene expression output from
the regulated promoter of interest. Admittedly, the gains
in noise control and the maintenance of the dynamic range
come at the cost of increasing inducer sensitivity (the
dose–response curves become steeper for the mutants in
Figure 2). Due to the ease of implementing such mutations
for controlling gene expression noise, together with the
clear benefits, this strategy may prove worthwhile to
include in the future design of synthetic gene networks
as well as repressor protein-based inducible gene expres-
sion systems.
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