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Role of reactive oxygen species in antibiotic action and resistance
Daniel J Dwyer1, Michael A Kohanski1,2 and James J Collins1,2

The alarming spread of bacterial strains exhibiting resistance to

current antibiotic therapies necessitates that we elucidate the

specific genetic and biochemical responses underlying drug-

mediated cell killing, so as to increase the efficacy of available

treatments and develop new antibacterials. Recent research

aimed at identifying such cellular contributions has revealed

that antibiotics induce changes in metabolism that promote the

formation of reactive oxygen species, which play a role in cell

death. Here we discuss the relationship between drug-induced

oxidative stress, the SOS response and their potential

combined contribution to resistance development.

Additionally, we describe ways in which these responses are

being taken advantage to combat bacterial infections and

arrest the rise of resistant strains.
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Introduction
The emergence of bacteria that have developed

resistance to nearly all single and combinatorial

antibiotic therapies used in the treatment of infection

is a worldwide clinical threat. We are faced with an

expanding list of microbial species that can actively

escape, with mechanistic heterogeneity, the killing

action of structurally and functionally diverse drug

classes. It is clear that novel antibacterial tactics, in-

cluding systematic exploration and exploitation of

microbial drug stress response and defense systems,

are required to combat antibiotic resistance [1]

(Figure 1).

Bacteria are capable of resisting the action of antibiotics

as a result of genetic alterations, including the physical

exchange of genetic material with another organism (via

plasmid conjugation, phage-based transduction, or hori-

zontal transformation), the activation of latent mobile

genetic elements (transposons or cryptic genes), and

the mutagenesis of its own DNA [2]. The last of these

mechanisms, chromosomal mutagenesis, may arise

directly from interaction between the chromosome

and the antibacterial agent or antibiotic-induced oxi-

dative stress, or indirectly from the bacterium’s error-

prone DNA polymerases during the repair of a broad

spectrum of DNA lesions. The efficacy of inhibiting

essential bacterial processes by antibiotics, and thus

their capacity to prevent infection, is diminished

following any of the aforementioned resistance-confer-

ring events. This is due to the microbe’s new-found

ability to modify or destroy the structure of a

given drug, reduce access to the drug target by an

alteration in permeability/active transport, or abolish

stable interactions between the drug molecule and its

target [2,3].

Clearly, the encounter between a thriving bacterial

population and antibacterial molecules that threaten

the existence of this population presents an enormous

stress to each microbe in the population. The critical

effect of this antibiotic-induced stress is the generation

of an intracellular environment that is highly conducive

to genetic evolution, owed to a tremendous degree of

selective pressure and the physiological responses of the

microbe [4,5]. Core responses include the SOS DNA

stress response (first described by Radman and Witkin

[6,7]), the heat-shock protein stress response (recently

reviewed in [8]), and the oxidative stress response

[9,10�]. Any bacterium surviving the initial wave of

antibacterial attack, due to any or all of these defensive

responses, may therefore serve as ‘patient zero’ in the

rise of populations resistant to single drugs or multiple

drugs. In this same manner, just a few ‘patient zeros’

may contribute to the burgeoning phenomenon of het-

eroresistance, where isolates from a given resistant

population exhibit heterogeneous levels of resistance

to an antibiotic.

In this commentary, we discuss the mechanism by which

cellular-generated oxidative stress is induced by anti-

biotic treatment, and the role of reactive oxygen species

(ROS) in drug-mediated bacterial cell death. Further, we

consider the relationship between the SOS response and

antibiotic-stimulated ROS, as well as the mutagenic

potential of these reactions, and describe current efforts

to exploit cellular responses in fighting drug-resistant

strains.
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ROS formation
The formation of ROS in living organisms is an unfortunate

by-product of respiration in an oxygen-rich environment

[9]. There is an extensive literature providing evidence for

the role of endogenous ROS as a causative agent in

mutagenesis and as a significant contributor to the muta-

tional burden experienced by microbes during periods of

oxidative stress (e.g. [11–13]). This notion is supported by

the existence of several overlapping enzymatic mechan-

isms employed by bacteria to combat ROS toxicity [14�].

ROS are generated intracellularly during aerobiosis-

fueled oxygen metabolism via successive single-electron

reductions, thereby producing superoxide (O2
��), hydro-

gen peroxide (H2O2), and highly destructive hydroxyl

radicals (OH�). Environmental molecular oxygen (O2) can

readily diffuse into microbes and interact with a host of

cellular biomolecules. Of particular importance to ROS

formation are those interactions between O2 and biomo-

lecules like respiratory flavoenzymes, which have acces-

sible catalytic redox cofactors within their active sites and

readily participate in electron transfer reactions with O2.

While O2
�� and H2O2 can both be generated in this

manner, recent evidence has shown that the respiratory

chain is responsible for the production of biologically

relevant levels of O2
�� [15], but not H2O2 [16]; the

specific cytoplasmic mechanism for the generation of

H2O2 in appreciable quantities during steady state is

not well understood.

Unlike O2
�� and H2O2, which can be enzymatically era-

dicated by the activity of superoxide dismutases

(2O2
�� + 2H+! H2O2 + O2) and catalases/peroxidases

(2H2O2! 2H2O + O2), respectively, there exists no

known enzyme that catalyzes the cellular detoxification

of OH�. Instead, OH� is capable of indiscrimining oxi-

dative attack on proteins, lipids, and DNA in a manner that

may be cytotoxic or mutagenic [17]. OH� is generated in
vivo via the Fenton reaction [18], during which cyto-

plasmic, solvent-accessible ferrous iron (Fe2+) is oxidized

by H2O2 to yield OH� (H2O2 + Fe2+! OH� +

OH� + Fe3+). The Fenton reaction is interdependent on

the Haber–Weiss reaction, during which ferric iron (Fe3+)

is reduced by O2
�� to yield Fe2+. It is important to note that

O2
�� may interact with ‘free’, unincorporated Fe3+, or it

may reductively attack iron–sulfur cluster-bearing

enzymes, thereby destabilizing and/or releasing Fenton-

ready Fe2+ [19,20].

As such, during periods of oxidative stress, O2
�� is pro-

duced at the membrane by the respiratory chain and is

dismutated by superoxide dismutases to H2O2 and

reduces Fe3+ by Haber–Weiss chemistry. H2O2 can then

oxidize Fe2+ by Fenton chemistry to yield OH� and Fe3+,

therefore potentially establishing a vicious redox cycle of

ROS attack and generation. Because Fe2+ is capable of

localizing to DNA, proteins, and lipids, generation of OH�

may occur in the immediate vicinity of these biomole-

cules and thus focus its deleterious effects. Along these

lines, it has been shown that Fe2+ exhibits a sequence-

specific preference when binding DNA and participating

in the Fenton reaction [21,22]. Interestingly, this

sequence can be found within the operator sites that

enable binding of the iron regulatory transcription factor,

Fur, to iron homeostasis-related gene promoters [23].

Antibiotic-induced ROS formation
As noted earlier, a better understanding of the specific

sequences of events leading to cell death from the wide

range of bactericidal antibiotics is needed for the de-

velopment of more effective antibacterial therapies. One

promising approach involves the identification of bac-

terial response network targets that can be exploited to

combat the rise of resistant microbes [24].

Along these lines, we recently employed a systems biology

approach to identify novel mechanisms that contribute to

bacterial cell death upon DNA gyrase inhibition by the

widely used fluoroquinolone antibiotic, norfloxacin [25�]. It

is well known that fluoroquinolone drugs achieve their

deadly effect through direct binding with DNA gyrase

(topoisomerase II, product of gyrA and gyrB) and/or topoi-

somerase IV (product of parC and parE), trapping the

topoisomerase(s) between the DNA strand breakage and

rejoining steps that take place during modulation of DNA

supercoiling [26]. This interaction results in the formation

of double-stranded DNA breaks and ultimately replication

arrest by blocking replication forks.

In our study, we performed phenotypic and microarray

analyses on Escherichia coli treated with norfloxacin to

identify additional contributors to cell death resulting

from gyrase poisoning [25�]. In the course of this work,

we discovered and characterized a novel oxidative

damage cell death pathway which involves ROS for-

mation, due in part to a breakdown in iron regulatory

dynamics following norfloxacin-induced DNA damage.

More specifically, we showed that gyrase-inhibiting anti-

biotic treatment resulted in the activation of the SoxR-

regulated O2
�� stress response [27], the IscR-regulated

iscRUSA operon for repair/synthesis of heavily degraded

iron–sulfur clusters [28], Fur-regulated iron import and

utilization [29], as well as the SOS DNA stress response

[30]. We demonstrated in vivo that these events promote

the Fenton reaction-catalyzed generation of OH�, and

that these highly destructive molecules play a critical role

in the bactericidal efficacy of norfloxacin [25�]. Key con-

tributors to OH� production and cell killing were atpC (a

structural and proton-translocating component of ATP

synthase) and iscS (a component of the aforementioned

IscR-regulated iron–sulfur cluster synthesis machinery).

Importantly, to prove that the observed generation of

ROS was not due to redox-cycling of the antibiotic, we

treated quinolone-resistant E. coli strains harboring
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Figure 1

ROS generation and proposed contribution to resistance following treatment of bacteria with antibiotics. (A) Generation of ROS during steady-state

conditions. Molecular oxygen (O2) can diffuse without impediment into bacteria and interact with a range of cellular biomolecules, including respiratory

flavoenzymes which catalyze the redox reactions that fuel aerobic electron transport chain activity. O2 can readily abstract electrons from respiratory

enzymes due to its reduction potential, making the electron transport chain the dominant source of superoxide (O2
�) in the cell. During homeostasis, an

abundance of superoxide dismutase enzymes (manganese-bearing Mn-SOD and iron-bearing Fe-SOD) exist in the cytoplasm to appropriately defend the

bacterium against superoxide-based oxidative damage. The product of superoxide dismutation is hydrogen peroxide (H2O2), which is also toxic and

requires additional layers of ROS defense. The primary scavenger of hydrogen peroxide is alkylhydroperoxide reductase (which is composed of AhpC and

Current Opinion in Microbiology 2009, 12:482–489 www.sciencedirect.com
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mutations in the gyrA gene and found that we could not

detect OH� generation.

Building upon this work with fluoroquinolones, we have

further shown that all classes of bactericidal antibiotics,

regardless of their specific target, promote the generation

of lethal hydroxyl radicals in both Gram-negative and

Gram-positive bacteria [10�]. To get at the system-level

responses underlying this phenomenon, we used micro-

arrays to collect time-course gene expression response

profiles for E. coli exposed to representatives of the major

bactericidal drug classes, including b-lactams and amino-

glycosides, in addition to fluoroquinolones. We analyzed

microarray data using transcriptional regulatory and bio-

chemical pathway classifications in order to refine the list of

significantly changing genes (by z-score) and identify coor-

dinately responding functional groups that were common

across the diverse drug classes. By taking this approach, we

were able to predict and subsequently confirm experimen-

tally that the general mechanism of lethal OH� production

involves tricarboxylic acid (TCA) cycle metabolism and a

transient depletion of NADH, in addition to iron–sulfur

cluster destabilization and iron misregulation.

The role of ROS in drug-induced killing has been

expanded upon in several recent studies. For example,

Wang and Zhao, in an attempt to determine which com-

ponents of cellular ROS defense systems play a role in this

phenotype, showed that the combined activity of super-

oxide dismutases SodA and SodB (containing manganese

and iron as cofactors, respectively) were critical to killing by

fluorquinolones, while the peroxidase AhpC (which uses

NADH as reducing equivalent when breaking down H2O2)

was critical to killing by b-lactams and aminoglycosides

[31]. Additionally, Engelberg-Kulka and colleagues have

reported on a potential connection between ROS gener-

ation, the chromosomally encoded MazF toxin and the

extracellular death factor (EDF) signaling peptide [32].

Moreover, three recent and separate comprehensive

screens of the contribution of single-gene disruptions to

increased antibiotic susceptibility have provided further

support for antibiotic-induced ROS formation and the role

of ROS in drug-mediated killing [33,34�,35�]. Specifically,

Miller and coworkers observed that the impairment of

ROS defenses in E. coli potentiates killing by rifampin

(a rifamycin) and metronidazole (a nitroimidazole) [33],

while Tavazoie and coworkers showed that the inhibition

of aerobic respiration reduced the susceptibility of E. coli to

aminoglycoside antibiotics [34�], and Hancock and col-

leagues observed that the mutations in TCA cycle metab-

olism and respiratory electron transport chain components

decreased killing by tobramycin (an aminoglycoside) in

Pseudomonas aeruginosa [35�].

Taken together, these studies have begun to establish a

mechanism for ROS production in bacteria during stressful

versus steady-state conditions. Along these lines, we have

recently attempted to elucidate the cellular events that

connect treatment of bacteria with aminoglycoside anti-

biotics and the oxidative stress cell death pathway [36]. Our

results show that aminoglycoside-induced mistranslation

and misfolding of membrane-associated proteins activate

the envelope stress response and redox-responsive two-

component signal systems, leading to the production of

hydroxyl radicals. Moreover, we found that these two-

component systems are broadly involved in bactericidal

antibiotic-mediated oxidative stress and cell death, provid-

ing additional insight into the common mechanism of

killing induced by bactericidal antibiotics.

Antibiotic-induced SOS response activation
and error-prone polymerases
A great deal of recent attention has been paid to the role

of the SOS stress response in the phenomenon of induced

mutagenesis [37], and the potential for combating resist-

ance by inhibiting the activity of SOS-regulated, muta-

genic machinery [38�,39�,40]. Considering that the SOS

response is most efficiently activated by DNA damaging

agents, it is not surprising that the most convincing

evidence correlating antibiotic treatment with inducible

mutagenesis and acquired resistance has followed from

the study of fluoroquinolone antibiotics [41–43,44�].

During times of homeostasis, the LexA repressor protein

effectively represses, via steric inhibition, the expression

of the genes that compose the SOS regulon [30]. Upon

detection of exposed, single-stranded DNA (the result of

DNA damage or stalled replication forks), the SOS cor-

egulator, RecA, is activated. The immediate effect of this

activation is the formation of nucleoprotein filaments at

the site(s) of genotoxic stress. Oligomerization of acti-

vated RecA then triggers autoproteolysis of LexA,

thereby inactivating LexA, alleviating LexA-mediated

repression, and initializing the highly dynamic expression

of SOS genes [45].
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( Figure 1 Legend Continued ) AhpF subunits, and uses NADH as a cofactor), which converts H2O2 to water. Increased concentrations of hydrogen

peroxide induce the complementary activity of hydroperoxidases (including OxyR-regulated KatG), which also convert H2O2 to H2O. (B) Generation of ROS

during antibiotic-induced stress conditions. When treated with bactericidal antibiotics, drug-target binding and resultant common changes in metabolism

have been shown to trigger the production of ROS which contribute to cell death in bacteria. Heightened respiratory activity results in the increased

production of superoxide, which overwhelms superoxide dismutase defenses and leads to the oxidation of iron-sulfur clusters ([4Fe–4S]2+) employed by

abundant dehydratase enzymes. The consequence of iron-sulfur cluster oxidation is the destabilization and/or release of ferrous (Fe2+) iron, which can be

oxidized by superoxide dismutase-generated hydrogen peroxide to yield hydroxyl radicals (OH�) via the Fenton reaction; interestingly, the tricarboxylic

acid (TCA) cycle and new iron-sulfur cluster synthesis have been shown to play critical roles in the initiation and repetition of these events. Hydroxyl

radicals are highly toxic and indiscriminately reactive, therefore making this ROS a potent mutagen of DNA that likely contributes to the acquisition of

resistance in bacteria.
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The majority of core SOS genes [46] have some functions

in the physical repair of damaged DNA. Repair may occur

via nucleotide excision, base excision, or recombination

pathways, depending on the type and number of lesions.

The repair process also involves the activity of specialized

DNA polymerases, DNA pol II (product of polB/dinA), IV

(product of dinB), and V (product of umuC and umuD),

which catalyze error-prone DNA synthesis across lesions

(translesion synthesis, or TLS) that are physically prohi-

bitive to the normal replicative polymerase, DNA pol III

[47,48]. Expression of pol V is SOS-dependent and its

activity is RecA-dependent, while expression of pol II

and pol IV is SOS-independent yet increased approxi-

mately 10-fold upon SOS induction [30]. While there is

some degree of functional overlap, and competition be-

tween these polymerases has been observed in vivo, pol II

and pol IV are considered more proficient at handling

sterically bulky DNA adducts (i.e. benzopyrenes) [49],

whereas thiamine dimers, abasic sites, and ROS-

mediated oxidation products are considered better sub-

strates for pol V [50]. The greatest difference between

these specialized DNA polymerases (and when compared

to pol III) is the accuracy with which they add the

appropriate deoxyribonucleotide base opposite damaged

or undamaged template DNA. Due, in part, to major

structural differences (i.e. a more accessible active site

and the absence of the so-called ‘O-helix’, an a-helix that

plays a key role in pairing cognate deoxyribonucleotides),

Y-family polymerases pol IV and pol V have been shown

to synthesize DNA with significantly higher error fre-

quencies than pol II (up to 1000-fold less fidelity),

depending on the template [51�,52]. Y-family poly-

merases also lack the exonuclease function of poly-

merases like pol II, and therefore cannot correct

mistakes that are made during replication.

Induction of the SOS response has also been explored

following treatment with antibiotics that do not directly

cause DNA damage. For example, several b-lactam drugs

(including ampicillin), which achieve lethality by disrupt-

ing membrane maintenance and biosynthesis or by dama-

ging the cell wall, were shown by Miller and colleagues to

trigger the SOS response via activation of the DpiAB two-

component system [53�]. Additional recent studies have

further explored the link between b-lactams, activation of

the SOS response and SOS-related expression of error-

prone polymerases [10�,54�,55�]. SOS induction has also

been observed following treatment with trimethoprim (a

dihydrofolate reductase inhibitor) [56], which is com-

monly formulated together with sulfamethoxazole (a sul-

fonamide) as cotrimoxazole and used to stem urinary tract

infections. This latter finding has been attributed to the

ability of this drug combination to exhaust intracellular

pools of deoxyribonucleotides by the inhibition of ribo-

nucleotide reductases, a mixed signal that may be per-

ceived by the cell as a sign of overwhelming DNA stress

(discussed in [57]).

A plausible explanation for the observed activation of the

SOS response by a diverse set of nongenotoxic antibiotics

is the antibiotic-induced cellular generation of ROS, an

effect we have explored and validated experimentally

[10�,25�]. It is also possible that activation of the SOS

response, via direct or indirect mechanisms (e.g. two-

component system signaling), acts as a catalyst for ROS

production during periods of drug-based stress. ROS

mutagenesis, which is addressed in the next section,

may then maintain the SOS response in a chronically

activated state and amplify ROS generation. A more

detailed exploration of the temporal gene expression

dynamics underlying interrelated antibiotic-induced

SOS and oxidative stress response activation is needed

to address these concepts.

DNA mutagenesis by ROS and its repair
The types of genotoxic stress induced by ROS include

physical damage to the DNA base moiety and the sugar–
phosphate backbone of incorporated or unincorporated

(free) nucleotides, as well as single-stranded and double-

stranded breaks within the double helix; in addition,

DNA can be damaged by by-products of lipid peroxi-

dation [58]. A wide variety of base adducts have been

described following exposure to ROS, with the most

prevalent of these being 7,8-dihydro-8-oxoguanine (8-

oxoG or GO), 2,6-diamino-4-hydroxy-5-formamido-pyri-

midine (FapyG), and thymine glycol (TG).

The cellular mechanisms that deal with the deleterious

mutagenic effects of these stable adducts have been

extensively studied. For example, because the 8-oxoG

adduct can mispair with adenine nucleotides nearly as

efficiently as it can pair with cognate cytosine nucleotides,

this mutated base frequently results in G:C to T:A trans-

versions when pol V-based translesion synthesis (TLS)

occurs before specific cellular defenses arrive on the scene.

Moreover, the 8-oxoG adduct provides a locus for further

attack by ROS and reactive nitrogen species, yielding an

array of DNA hyperoxidation products. A recent study

performed by Neeley and colleagues examined the effi-

ciency with which TLS polymerases pol II, pol IV, and pol

V bypassed 8-oxoG and 8-oxoG hyperoxidation lesions,

and monitored the frequency of 8-oxoG-related mutations

in vivo on template DNA [59�]. They found that pol V

exhibited the greatest TLS efficiency across the mutagenic

spectrum tested, and that the activity of pol V was required

for SOS-dependent remediation of oxidative lesions. Inter-

estingly, the authors also concluded that the nucleotide

which pol V incorporates opposite a given oxidative adduct

has more to do with the lesion itself rather than the TLS

abilities of the polymerase. This point may be critical to the

link between acquired resistance, hypermutability and

antibiotic-induced oxidative mutagenesis, for example,

ROS could provide a means to rapidly diversify the breadth

of mutation, which is then amplified by the activity of error-

prone SOS polymerases.
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To prevent this from occurring, bacteria have evolved a

three-component 8-oxoG elimination system, referred to

as the ‘GO system’. The GO machinery includes the

MutM glycosylase which removes 8-oxoG adducts, the

MutY glycosylase which removes misincorporated ade-

nine nucleotides during the replication process, and the

MutT phosphatase which sanitizes the nucleotide pool of

available 8-oxoG triphosphate by hydrolyzing its conver-

sion to 8-oxoG monophosphate; MutM also excises

FapyG adducts, while the exonucleases Ndh and Nei

excise TG adducts [60,61]. Glycosylases function by

scanning DNA for lesions, then binding the lesion site

in such a way that the base adduct is flipped outwards for

N-glycosylic bond cleavage (between the base moiety and

the sugar–phosphate backbone) within the glycosylase

active site [62,63]. In this manner, the active site deter-

mines the specificity of the enzyme.

A potentially mutagenic and/or cytotoxic abasic site (lack-

ing the base moiety) is generated following glycosylic

cleavage, requiring further processing, including the

activities of abasic endonucleases, DNA ligase, and

DNA polymerases. Furthermore, if abasic sites on oppos-

ing DNA strands are in close proximity, double-stranded

breaks may occur [64]. Pol V is among those polymerases

that can efficiently synthesize DNA across abasic sites. As

such, environmental conditions that promote oxidative

stress, including growth in the presence of bactericidal

antibiotics, provide powerful direct and indirect mech-

anisms for mutagenesis. There is a great deal yet to be

explored in this space, including the contribution of these

conditions to the development of antibiotic resistance.

Conclusions
Eighty years ago, Alexander Fleming’s publication detail-

ing his discovery of penicillin ushered in the modern era

of antibacterial therapy [65]. Yet, within 15 years of his

findings, Fleming presciently hypothesized that bacteria

would likely attain resistance to any antibiotic treatment

given the right circumstance. The continued emergence

of single and multiple antibiotic-resistant bacterial strains

is one of the more important societal issues today. Jus-

tifiably, the focus of antibiotic resistance research in the

last half century has been on the elucidation of the

mechanisms by which microbes can physically alter a

drug’s structure, disrupt the interaction between a drug

and its cellular target, or alter the behavior and efficiency

of its own transport machinery to reduce access to a drug’s

cellular target [2,3]. A new wave of research, however,

dedicated to characterizing the physiological responses of

bacteria to the presence and action of antibiotics may hold

the key to thwarting the rise and spread of resistance.

With regard to the SOS response and the phenomenon of

induced mutagenesis, a number of current research efforts

have explored the effects of disabling the protein regula-

tors that control expression of the SOS network of genes,

including error-prone polymerases. For example, we have

recently shown that a recA knockout strain of E. coli is

significantly more susceptible to all classes of bactericidal

antibiotics, highlighting the contributions of ROS to drug

killing [10�]. Additionally, in a study by Romesberg and

coworkers, it was shown that expression of an uncleavable

form of LexA (thus preventing SOS activation) in drug-

treated bacteria resulted in decreased survival and mark-

edly lower mutation rates in culture (ciprofloxacin), as well

as in a mouse model of infection (ciprofloxacin and rifam-

picin) [38�]. Along these lines, recent work by our lab has

demonstrated that bacteriophage engineered to express an

uncleavable LexA variant substantially increase survival in

an ofloxacin-treated mouse model of systemic infection

[40]; moreover, in this same study, it was shown that

combinatorial treatment of ofloxacin and engineered bac-

teriophage can enhance the killing of fluoroquinolone-

resistant bacteria by nearly four orders of magnitude com-

pared to ofloxacin alone. Together with efforts aimed at

identifying small molecule and short peptide inhibitors of

RecA’s ATPase and DNA filament formation abilities

[66�,67�], it is clear that great potential lies in taking

advantage of our current knowledge of the SOS response

to combat current antibiotic resistance and prevent further

development of resistant strains. These efforts may also

offer the added benefit of increasing the efficacy of cur-

rently prescribed drugs, which would be particularly

important given the lack of developmental efforts [1].

With regard to antibiotic-induced ROS formation and its

role in bacterial resistance, a number of studies have

attempted to resolve the role of ROS and the oxidative

stress response in cell killing following drug treatment. In

fact, it is likely that studies such as those by Demple and

colleagues, which described several distinct mutations

(some neverbeforeobserved) inmultidrug-resistantclinical

isolates that increased expression of the O2
�� response

activator, SoxS [68], will become increasingly more com-

mon as the role of oxidative stress in antibiotic-mediated

cell death becomes clearer. As we determine the steps

between antibiotic addition and the metabolic changes that

fuel ROS formation for bactericidal drug classes [10�,25�], it

is vital thatwe compare and contrast these mechanismswith

what we know about ROS generation and remediation

during steady-state growth or following treatment with

redox-cycling drugs [14�,17]. It may then be possible to

exploit the oxidative stress response in order to enhance

current antibacterial therapies, as was highlighted recently

when bacteriophage engineered to overexpress SoxR sig-

nificantly increased cell killing by ofloxacin [40]. Moreover,

this approach may afford for the identification of novel

targets within the microbe’s defense systems for the de-

velopment of inhibitor molecules or new antibiotics.
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