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Heterogeneous bacterial persisters and engineering approaches
to eliminate them
Kyle R Allison1, Mark P Brynildsen2 and James J Collins1,3,4
Bacterial persistence is a state in which a subpopulation of cells

(persisters) survives antibiotic treatment, and has been

implicated in the tolerance of clinical infections and the

recalcitrance of biofilms. There has been a renewed interest in

the role of bacterial persisters in treatment failure in light of a

wealth of recent findings. Here we review recent laboratory

studies of bacterial persistence. Further, we pose the

hypothesis that each bacterial population may contain a

diverse collection of persisters and discuss engineering

strategies for persister eradication.
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Introduction
Bacterial persistence is a phenomenon in which a sub-

population of cells survives antibiotic treatment [1�,2�,3–
7]. In contrast to resistant bacteria, persisters do not grow

in the presence of antibiotics and their tolerance arises

from physiological processes rather than genetic

mutations in a subpopulation of bacteria. Persistence

was first described by Joseph Bigger in 1944 [8] while

attempting to sterilize cultures of pathogenic Staphylo-
coccus aureus with penicillin. He found that a small num-

ber of cells ‘persisted’ and could later form colonies even

after treatment with high antibiotic concentrations.

The possible clinical implications of persisters were

apparent: antibiotics might not sterilize infections and

remaining bacteria could later cause recurrence once

treatment ended [9��]. Early clinical studies of in vivo
www.sciencedirect.com 
persistence in S. aureus, S. pneumoniae, and M. tuberculosis
demonstrated that the phenotype was indeed an import-

ant and distinct problem in the treatment of infections

[9��,10��]. Driven by an abundance of recent laboratory

findings [11–24], there is renewed interest in clinical

persistence [25,26��], which has led to the demonstration

that high-persistent mutants can arise during treatment of

chronic infections [26��]. Here, we review some of the

recent laboratory studies of bacterial persistence in E. coli
[1�,2�,3] and propose that persistence might be explained

by variance in the many processes governing stress

responses and antibiotic lethality, suggesting that a single

population of bacteria contains a collection of distinct

persisters.

hipA and the dawn of persister genetics
The first paper in persister genetics was published in 1983

by Moyed and Bertrand, who presented the results of a

mutagenesis-and-selection scheme designed to create

mutants with high persistence to penicillin [27]. After

24 independent attempts, they created four high-persist-

ence strains, two of which were found to have mutations

in the same gene, named hipA (for ‘high persistence’). 1%

of the hipA mutant cells persisted treatment with multiple

antibiotics targeting peptidoglycan synthesis [28], repre-

senting a 100-fold increase over wild-type persistence.

Rather than being resistant, an isogenic population of

hipA mutants instead had a higher frequency of persisters.

Noting that antibiotics that inhibit peptidoglycan syn-

thesis are most lethal immediately following a round of

DNA replication, the authors hypothesized that the

mutant hipA arrests the cell cycle before entry into this

susceptible phase. Studies have indicated that both the

native hipA [29] and mutant hipA [30], which is considered

a gain-of-function mutation [29,31], appear to target

peptidoglycan synthesis, and that such inhibition may

explain persistence [32,33]. However, though native hipA
expressed heterologously can induce persistence under

multiple conditions, the chromosomal hipA only appears

to play a role in persistence in stationary phase [22,29],

which raises the question of the importance of hipA in

persistence generally.

Recent studies add to the early physiological research by

suggesting that hipA is a kinase that inhibits translation by

phosphorylating the EF-Tu elongation factor. Exper-

iments showed incorporation of radio-labeled ATP into

hipA when the two were incubated together, an effect

abolished by mutations to specific residues in a predicted

binding pocket, suggesting that hipA has the capability of
Current Opinion in Microbiology 2011, 14:593–598
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autophosphorylation [34]. Later studies suggested that

hipA interacts with and phosphorylates translation

elongation factor EF-Tu [35], and two separate crystal-

lography studies suggest that hipA possesses a novel

phosphorylation mechanism [35,36]. This phosphoryl-

ation event was posed as a possible mechanism for

hipA-induced persistence in which hipA phosphorylates

EF-Tu, leading to translational inhibition and sub-

sequent tolerance to antibiotics. Whether this is the

mechanism for the high persistence of mutant hipA is

an open question, and further work testing this hypothesis

is required as translational inhibition alone does not

induce ampicillin persistence [31] and hipA has not been

implicated in tolerance to aminoglycosides [27]. Connect-

ing these recent biochemical insights to the physiological

responses elicited by the native and mutant hipA will be

crucial to understanding the role of this protein in bac-

terial persistence.

Since the description of the hipA mutation, hipA has

become the persister gene of choice and has been studied

extensively [22,27,29–31,34–39], playing an important

role as a model system for the study of bacterial persist-

ence [11–13,40,41]. Though hipA launched the field of

persister genetics, numerous other genes and processes

have since been found to contribute to bacterial persist-

ence, as we discuss below.

More than one way to make a persister
There have been many laboratory studies on persistence

in the past decade, many of which have uncovered

previously unrecognized conditions and processes con-

tributing to the phenotype. Here, we focus on three of

these: heterogeneous growth, nutrient limitation, and the

SOS response.

Heterogeneous growth

Heterogeneity in growth rates has been shown to play a

role in bacterial persistence [11,13,20]. Studies have

demonstrated that non-growing and dormant cells are

more likely to persist antibiotic treatment than actively

growing cells. Evidently, the growth rate of E. coli fits a

bimodal distribution, in which two distinct populations,

growing and non-growing, co-exist in the same culture

[20]. Cell-sorting experiments showed that dormancy of

the non-growing population correlates with persistence as

dormant populations have 20 times more persisters than

normally growing populations. This additionally suggests

that dormancy does not entirely explain persistence as

many dormant cells are not persisters and many persisters

are not dormant.

Interestingly, the dormant cells in one of these studies

appear to be narrower than normally growing cells,

suggesting that stationary-phase cellular dwarfing [42],

bacterial self-digestion, may play a role in persistence.

These dormant cells may be stationary-phase remnants
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that have yet to wake up rather than population variants

that chose to cease growing, and it would be interesting to

examine whether serial passage of a culture eliminates

this population [21].

Nutrient limitation

Under laboratory conditions, the environment and physi-

ology of bacteria change considerably once they have

exhausted the majority of nutrients, a situation referred

to as stationary phase [42]. It has been shown that pers-

isters predominantly form as cultures approach and enter

stationary phase [11,21] and they are lost from cultures

that have been serially passed through rich media con-

ditions to promote early exponential-phase growth [21].

These data suggest that persisters examined in rapidly

growing populations may be relics of the overnight cul-

ture used for culture inoculation, though this clearly does

not account for persisters that arise from induction of

processes such as hipA overexpression or the SOS

response (discussed below).

A recent study highlights the importance of stationary

phase in bacterial persistence by demonstrating that the

age of inocula has a dramatic effect on persister levels

[43�]. This work suggests that the differences in persist-

ence observed upon perturbing certain genes can be

explained by the amount of time spent in stationary phase

before inoculation, indicating that these genes may not be

important contributors to persistence. The age of the

bacterial inoculum is rarely controlled for in persister

methods, and this study strongly suggests that it should

be.

SOS response

The SOS response, a major stress response system in

bacteria that is induced by DNA damage [44], has

recently been implicated in persistence [23,24,45]. Strains

in which the SOS response cannot be activated have

decreased persistence to DNA-damaging quinolone anti-

biotics. It was further shown that induction of the SOS

response by subinhibitory levels of mitomycin C

increased persistence [23,45], demonstrating that bacteria

can adjust their tolerance to antibiotics by sensing and

responding to stressful environmental conditions. The

antibiotic concentration dynamics appear to be crucial for

SOS-induced persistence as only 1% of those that survive

treatment with high antibiotic concentrations had

induced the SOS response. This work implies that per-

sistence is in some cases inducible, which adds to models

of persistence as a random switching event [11].

Persisters and physiological heterogeneity
The diversity of the pathways implicated in bacterial

persistence suggests that, in addition to there being more

than one way to make a persister, there may be different

types of persisters. This raises the possibility that each

persister has its own specific tolerances to antibiotics.
www.sciencedirect.com
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Total dormancy of a subpopulation is an attractive model

for persistence as it simplifies the phenotype and suggests

a possible unified theory of persistence. However, this

model does not fit the growing body of experimental

findings demonstrating diversity in both the tolerance

to different antibiotics and the genes that contribute to

persistence. This diversity suggests that the processes

involved in stress responses and those required for anti-

biotic lethality are not simultaneously controlled within

individual cells as part of a physiological program leading

to a persistent state. As a result, the persistent subpopu-

lation may not be uniformly distinct, physiologically

speaking, from the susceptible population.

An alternative model is that each population contains a

diversity of persisters based on fluctuations and variability

in cellular processes (Figure 1). This diversity hypothesis

suggests that persistence may be a result of multiple

distinct cellular physiologies within a population. The

apparent population split between tolerant and persistent

cells when treated with antibiotic would then be masking

an abundance of different mechanisms and associated

phenotypes by which cells evade antibiotic lethality.

Given the potential variance in cellular processes

[46�,47–49], it seems plausible that persistence could

result from stochastic fluctuations in lethality-governing

processes. Whether persister states explored through

fluctuations can be stabilized by epigenetic DNA modi-

fications, which play an important role in other hetero-

geneous phenotypes [50], remains an open question. This

hypothesis suggests that each bacterial culture contains a
Figure 1

a
b
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A plurality of persisters. Within a group of persisters, there may be

significant diversity based on multiple, tolerance-conferring

mechanisms. Membrane potential can be active (red) or reduced (green).

DNA may be under active replication (orange circles) or not (green

cicrles). Ribosomes (in blue) may be translating proteins or inhibited. Cell

division is blocked in some cells. For example, cell a has normal

translation, high membrane potential, but inhibited DNA synthesis,

whereas cell b has inhibited translation, low membrane potential, active

DNA replication, and stalled cell division.
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collection of distinct persister subpopulations, each with

its own unique tolerance mechanisms. The study of such

persistent heterogeneity is beyond many current exper-

imental methods and will benefit greatly from increased

investigation of single cells [51–53].

Following this reasoning, experimentally determined

persister levels are the result of the distributions of

stress–response and lethality-governing processes, which

suggests that environmental conditions and genetic per-

turbations affecting these processes alter persistence.

Experiments that perturb ‘persister genes’ impact related

processes and tune the distributions of processes govern-

ing antibiotic tolerance. Given the role of stochastic

fluctuations in large populations studied in the lab, per-

sistence may be a statistical certainty, regardless of the

exact persister level, the antibiotic used, or the particular

tolerance mechanisms present. As a result, a model of

bacterial persistence as a unified and distinct state may be

impossible. Though persisters may currently be beyond

comprehensive mechanistic study, attempts to eliminate

persisters may not require full attention to the compli-

cated set of processes leading to persistence.

Engineering treatments for persisters
The clinical importance of developing anti-persister strat-

egies is self-evident, though there have been few

attempts to target the elimination of persisters. It has

been suggested that drugs and methods could be devel-

oped to target the genetic determinants leading to pers-

ister formation so as to prevent or reverse persistence [2�].
Given the number of genes involved in persistence, such

an approach may prove difficult. Toward development of

treatments for a diversity of persisters, it may be advan-

tageous to focus instead on the mechanistic aspects of

bactericidal antibiotics. Regardless of how they form,

persisters must tune certain processes, such as peptido-

glycan synthesis in the case of hipA-associated persisters,

in order to avoid the lethal effects of antibiotics. Many of

these processes are known and have been characterized

for commonly used, bactericidal antibiotics [54�]. The

distributions of these processes can be tuned by external

stimuli, an approach that could be aided by single-cell

based methods such as fluorescently activated cell sort-

ing. Tuning these processes would alter the distribution

of susceptibility in a population, thereby rendering pers-

isters vulnerable to the antibiotics that target such pro-

cesses (Figure 2). Though easier said than done, we have

recently demonstrated the success of such an approach.

As protein translation occurs in persisters [12], we

reasoned that persisters should be susceptible to amino-

glycoside antibiotics, which are ribosome-targeting, bac-

tericidal antibiotics [55,56]. Persisters are however not

susceptible to aminoglycosides [18,22], and we suspected

that this could be owing to decreased proton-motive force

(PMF), as it is well established that PMF is required for
Current Opinion in Microbiology 2011, 14:593–598
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Figure 2

PersistentSusceptible
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Tuning

Tolerance-Associated Process
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Tuning tolerance-associated processes. Cells in a population have

varied activity of a particular tolerance-associated process (red

distribution). As a result, though most cells can be killed by an antibiotic,

a portion of the population is persistent. By tuning the process, and

thereby shifting its distribution (green dotted distribution), the persistent

population can be made susceptible to an antibiotic.
aminoglycoside uptake [57�]. Through specific metabolic

stimuli (e.g. mannitol, fructose), we induced PMF in

persisters, thereby enabling aminoglycoside uptake and

killing [58�]. This approach specifically induced processes

necessary for aminoglycoside killing as the metabolic

stimuli did not facilitate persister killing by quinolones

or b-lactams. Not only was this approach successful in

laboratory cultures, but it was also effective at eliminating

E. coli and S. aureus biofilms and improving treatment in a

mouse chronic, urinary-tract-infection model. Hence,

through mechanistic understanding of aminoglycoside

lethality and by tuning persister physiology, we were able

to engineer a clinically viable treatment for eradicating

persisters.

Given the wealth of knowledge on how bactericidal

antibiotics kill bacteria, it should be possible to develop

a variety of similar mechanism-based approaches for

treating persisters. Future anti-persister strategies could

be engineered by utilizing methods promoting peptido-

glycan synthesis or autolysin activity for the b-lactams

[59–61], by harnessing methods promoting DNA replica-

tion or inhibiting SOS response for the quinolones [62], or

by employing methods inducing reactive oxygen species

(ROS) or inhibiting ROS-protective genes for all bacteri-

cidal antibiotics [63–65]. These methods might utilize

external metabolic and chemical stimuli or engineered

bacteriophage [66] to evoke the needed physiological

responses. Additionally, incorporation of mechanistic

knowledge of antibiotic lethality in bacterial persistence
Current Opinion in Microbiology 2011, 14:593–598 
may shed light on the tolerance of quiescent cancer cells

to chemotherapeutic agents [67–69].

Conclusion
Studies over the past decade have implicated a multi-

plicity of processes contributing to bacterial persistence.

Given the physiological complexity of each bacterial cell,

it seems plausible that persistence may be the result of

fluctuations and variance in different tolerance-associ-

ated processes. This suggests, that in a single bacterial

population, there may be many different types of pers-

isters, each with distinct mechanisms for evading the

lethal effects of bactericidal antibiotics. Advances in

sequencing and single-cell technologies will help test

this hypothesis and aid standard techniques in the elu-

cidation of persister physiology. This hypothesis further

suggests the importance of incorporating mechanistic

understanding of antibiotic modes of action into models

of persistence. The wealth of available knowledge and

insights into the action of antibiotics could be utilized to

develop clinically viable, mechanism-based methods for

eradicating persisters.
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