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Ordinary differential equations are often used to model the dynamics and interactions in genetic
networks. In one particularly simple class of models, the model genes control the production rates
of products of other genes by a logical function, resulting in piecewise linear differential equations.
In this article, we construct and analyze an electronic circuit that models this class of piecewise
linear equations. This circuit combines CMOS logic andRC circuits to model the logical control of
the increase and decay of protein concentrations in genetic networks. We use these electronic
networks to study the evolution of limit cycle dynamics. By mutating the truth tables giving the
logical functions for these networks, we evolve the networks to obtain limit cycle oscillations of
desired period. We also investigate the fitness landscapes of our networks to determine the optimal
mutation rate for evolution. ©2004 American Institute of Physics.@DOI: 10.1063/1.1786683#

Networks giving rise to complex dynamics exist in a wide
range of physical, biological, and engineered systems. Re-
cent studies have focused on the structure of such net-
works, and examined how the structure is linked to func-
tional properties such as robustness and error tolerance.
In general, however, a theory to predict the dynamics
based on network structure is lacking, and consequently,
it is often unclear what structural architecture is needed
to produce desired dynamics. Here we show that net-
works with desired complex dynamics can be obtained by
evolving their structure rather than by designing it from
the outset. We construct and experimentally analyze an
electronic circuit that is based on a class of ordinary dif-
ferential equations that model genetic networks. Net-
works in this system can display a variety of dynamics,
including steady states, limit cycles, and chaos. Here we
focus on limit cycles and show that it is possible to evolve
networks that display stable oscillations of a specified
cycle length. By analyzing the fitness landscape, we dem-
onstrate that there is an optimal evolution rate for ob-
taining such dynamics. This work shows how mutations
in model gene networks can lead to the evolution of dy-
namic behaviors.

I. INTRODUCTION

Research carried out by Jacob and Monod in the early
1960s provided early insights into the regulation of the ac-

tivities of genes. They discovered that specialized protein
molecules, called transcription factors, could bind directly to
DNA thereby regulating the activity of regions of DNA
proximate to the binding site of the protein. Since the DNA
carries the code for the structure of proteins, products from
one DNA site could affect the activity at another DNA site,
thereby leading to a network of genes interacting through
protein intermediaries. In an early paper, Jacob and Monod
outlined simple genetic control circuits that they imagined
could underlie biological processes associated with multista-
bility and oscillation.1 Shortly after this seminal work, math-
ematical models of genetic control networks were developed
in which the ‘‘on–off’’ dynamics of genes could be modeled
by networks of Boolean logical devices that updated at dis-
crete times.2–6

The notion that the regulation of gene activity can be
modeled using logical functions has persisted to the
present.7–11 Further developing these ideas, recent work has
demonstrated that different logical functions can be combi-
natorially synthesized in bacteria,12 directed evolution can be
used to generate a genetic circuit that acts as an inverter,13

and that the binding of transcription factors to DNA is ide-
ally suited to generate modular and evolvable transcriptional
control.14 Finally, following up on Jacob and Monod’s early
proposals, genetic circuits in bacteria have now been de-
signed and synthesized that show simple dynamic behaviors
including bistability15–17 and oscillations.18

The above papers provide a rationale for studying net-
works of genes that display switchlike behavior. However,
since there is no evidence of clocking devices that update
states of networks at discrete times in genetic networks, wea!Electronic mail: glass@cnd.mcgill.ca
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believe it is more appropriate to study dynamics in differen-
tial equations representing networks in which time is con-
tinuous but the activities of the elements of the networks are
regulated using logical functions.19–25 In this formulation,
the concentrations of the protein transcription factors in-
crease or decrease exponentially, but the target genes that are
under control switch between two states. In the ‘‘on’’ state, a
gene is activated leading to the synthesis of the protein for
which it codes, and in the ‘‘off’’ state, the gene is inactive
and the protein for which it codes decays towards zero con-
centration. A given gene is turned on or off, depending on the
logical function that controls it, and whether the transcription
factors that regulate it are above or below threshold levels.

The ways in which real genetic control networks evolve
is not understood. The current work shows how the modifi-
cations in the rules controlling gene expression can be used
to seek a desired dynamics, even though there is no theory to
predict what structural architecture is needed to produce the
desired dynamics. Many recent papers have analyzed evolu-
tion in a variety of systems including electronic
networks,26,27 mathematical models of genes,28 computer
models of genes,29–31 computer models of gene networks,32

complex networks,33,34and genetic circuits in bacteria.13 Our
work is complementary to these studies in that we use a
localized random search method to find and explore novel
dynamical behaviors, and to study how the properties of
these behaviors change as a network becomes progressively
modified.

In this work, rather than analyze dynamics in a theoret-
ical model, we have chosen to study dynamics in a hybrid
digital–analog system that models the differential equations.
We have two main reasons for doing this. First, in the elec-
tronic system there are necessarily small amounts of noise,
and consequently all observed dynamics will be robust to
small perturbations in the circuit. Second, we believe that the
class of circuits we consider has intrinsic interest, and at
some stage might lead to novel ways to build oscillators
displaying robust dynamically different nonlinear oscilla-
tions. Our emphasis on the design of real circuits, also places
the current work in the area of evolutionary electronics.26,27

However, most of the work in evolutionary electronics is
concerned with the design of circuits that compute functions
of input data, rather than the evolution of circuits that have
novel dynamic behaviors.

The paper is organized as follows: In Sec. II, we intro-
duce differential equations that have been used to model ge-
netic networks. Section III describes the design of an elec-
tronic circuit that models the differential equations, and
shows the dynamics for circuits of three and five elements,
respectively. Section IV describes the evolution algorithm we
employ to search for novel dynamic behaviors. In Sec. V, we
provide theoretical insight into the optimal mutation rate by
analyzing the fitness landscape of the model system. Finally,
in Sec. VI, we discuss the significance and implications of
the presented work.

II. A DIFFERENTIAL EQUATION MODEL FOR GENE
NETWORKS

The class of piecewise linear differential equations that
underlie the design of the circuit has been proposed as a
highly simplified model of genetic networks,20–25

dxi

dt
52g ixi1Bi~Xi 1

~ t !,Xi 2
~ t !,...,Xi K

~ t !!,

i 51,...,N, ~1!

where xi is a continuous variable,Xi is a discrete binary
variable,Xi51 if xi>u i andXi50 if xi,u i , whereu i is a
threshold, g i is a decay constant, and
Bi(Xi 1

(t),Xi 2
(t),...,Xi K

(t)) is a function that depends only
on the logical values of itsK inputs,Xi 1

(t),Xi 2
(t),...,Xi K

(t).
We assume that there is no self-input, so that the inputs toBi

do not include variablei . In some situations, and in particu-
lar in the current paper, we may assume thatBi is a Boolean
variable that only assumes two values~which through rescal-
ing can be set to be 0 and 1!. In the biological context, we
can think of xi as a class of proteins, called transcription
factors, that regulate the production of other transcription
factors, e.g., see~8!. Given that the circuit elements act as
simple integrators, the dynamics of any particular network
are governed completely by the truth table and initial condi-
tions.

Letting $t1 ,t2 ,...,tk% denote the switch times when any
element of the network crosses its threshold, we can obtain
the solution of Eq.~1! for each variablexi for t j,t,t j 11 :

xi~ t !5xi~ t j ! e2(t2t j )1Bi~Xi1~ t !,Xi2~ t !,...,XiK~ t !!

3~12e2(t2t j )!. ~2!

Thus, by piecing together the trajectories, it is possible to
determine the dynamics for future times. As we show below,
this differential equation can be implemented by a hybrid
digital–analog circuit in which different elements are chang-
ing state at different times. Consequently, it differs signifi-
cantly from synchronous Boolean switching networks, such
as those proposed by Kauffman,3,4 in which the logical states
of all network elements are updated simultaneously.

Because of their simple structure, these equations are
amenable to theoretical analysis. The equations can display
fixed points, stable limit oscillations, and chaotic dynamics.
Further, as the number of variables in the networks increases,
there is a combinatorial explosion in the number of possible
networks. We are interested in constructing an electronic net-
work with a comparatively small number of elements that
can have rich dynamic behavior. We choose to construct a
system of five variables in which each receives four inputs.
Since there are 24 logical states of four variables, there are
224

5216 different logic functions of four variables. Conse-
quently, the total number of networks is 280. Using group
theoretic arguments based on the symmetries of the truth
tables, the number of distinct networks is'3.1431020.22

These different networks are generated by designating the 80
entries in the five truth tables of the five elements of the
network. Edwards gives a comprehensive review of the prop-
erties of these equations.23

708 Chaos, Vol. 14, No. 3, 2004 Mason et al.

Downloaded 08 Oct 2004 to 128.197.51.38. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



III. A HYBRID DIGITAL–ANALOG CIRCUIT

A. Design of the circuit

We constructed a hybrid digital–analog circuit that mod-
els networks of five genes described by the above equations.
Since this system is subjected to intrinsic noise and time
delays associated with its operation, and since its parameters
depend on the actual values of capacitances and resistors,
any observed oscillations must be robust.

The construction of this circuit relies onRC circuits and
combinatorial switching circuits. In anRC circuit, a voltage
E is provided to a circuit with a resistanceR and capacitance
C. In our system, the voltageE arises from the logical con-
troller as it switches back and forth between 5 V and 0 V, as
determined by the dynamics of the network described below
@Fig. 1~A!#. Following a change in the value ofE at t50, we
find that the voltage across the capacitor is

V~ t !5E1~V~0!2E!e2 ~ t/RC!. ~3!

Thus, the voltage across the capacitor is an exponential func-
tion that approachesE with a time constant equal toRC. In
this sense, the voltageV(t) is analogous to the concentration
of a protein transcription factorxi(t). Moreover, we can pass
the voltage through a threshold element to provide a logical
variable analogous to the logical variableXi(t).

Figure 1~A! shows a schematic diagram of the circuit for
element 5. To model the regulation of genes, we apply meth-
ods of combinatorial switching circuit design35 using CMOS
logic. This allows us to model in a programmable way, the
logical functions that control the regulation of the ‘‘on–off’’
states the genes. Any of the 216 logic functions of four vari-
ables can be synthesized by an appropriate combination of
the control linesb1 ,b2 ,...,b16. In order to generate any

logical function, theb i are combined in an AND function
with all possible logical states of the four model genes that
are inputs to gene 5. For example, settingb151 andb i50
for i 52,...,16, only produces a value ‘‘true’’ or ‘‘1’’ ifX1

5X25X35X451 at the same time.
The operation of the network can be appreciated by con-

sidering the voltage relative to ground that would be re-
corded at three different places in the circuit@see Fig. 1~B!#.
The voltage at I corresponds to the Boolean functionB5 in
Eq. ~2!. This voltage would be 5 V if the logical switch at
that time was ‘‘true,’’ otherwise it would be 0 V. The voltage
at point II corresponds to the value ofx5 in Eq. ~2!. As
follows from Eq.~3!, if the voltage at I is 5 V, then at point
II in the circuit, there will be an exponentially increasing
function; if the voltage at I is 0 V, then at point II in the
circuit, there will be an exponentially decreasing function.
Finally, the voltage at III corresponds to the value ofX5 in
Eq. ~2!. By passing the signal at II through two inverters, we
find a voltage of 5 V at point III if the voltage is above the
threshold, or we find a voltage of 0 V if the voltage is less
than the threshold. The feedback is provided by feeding back

X5 , and its complementX̄5, into the combinatorial logic
functions for the other elements. By selectingR5100 kV,
C50.1 mF, we set the time constant to be 10 ms.

The circuit was modified and data were analyzed under
Labview ~National Instruments, Austin, TX, USA! with a
digital I/O card to initialize the control functions and an ana-
log data acquisition card to collect the output. All modifica-
tions involved only making changes in the set ofb i that
define the truth tables for the network. We analyzed the re-
sulting dynamics for stable periodic oscillations. The analy-
ses were carried out for time series of 3.5 s length sampled at

FIG. 1. Schematic diagram of element 5 in the electronic circuit~A! and the output at three points in this circuit~B!. The output of the circuit is controlled
by inputs fromX1 ,X2 ,X3 ,X4 and the truth tableb1 ,b2 ,...,b16 . The AND functions and OR functions are realized using CMOS chips. The waveforms at
points I, II, and III in the circuit are indicated in panel B. The output of the truth table at I is converted to an exponentially increasing or decreasingsawtooth
at II by passing the voltage at I into anRC circuit. The sawtooth is then converted to a step function using two inverter chips in series. An inverter chip
converts an input voltage that is less than a threshold of approximately 2.1 V, to a ‘‘high’’ output, and an input voltage that is greater than the threshold to a
‘‘low’’ output. The output at III from this circuit is fed into the inputs of the other elements. The circuits for the other elements are constructed in an analogous

fashion. The bar over a variable indicates negation, i.e., 05̄1 and 1̄50.
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2 kHz. Each time a circuit element switched from high to
low, or low to high, we recorded the element that switched.
The resulting sequence of integers was then analyzed for the
shortest repeating sequence, of at least three integers, in
which each integer appears an even number of times. Peri-
odic switching sequences in the solutions of Eq.~2! are as-
sociated with stable limit cycle oscillations.22 If the identified
sequence repeated at least 15 times, we determined the pe-
riod of the resulting cycle. This analysis procedure was
checked in a large number of cases, and in all cases, it iden-
tified stable large-amplitude periodic solutions. Since these
networks can also display switching at a rapid rate set by the
time delays of the circuit that are associated with a stable
focus in the differential equations, and since we are inter-
ested in stable limit cycle oscillations with long periods, we
only consider cycles whose period was greater than 10 ms.

B. The repressilator: Oscillations in a three-gene
network

In order to illustrate the operation of the circuit, we show
the dynamics for a simple circuit with three genes that has
been designed to oscillate. One mechanism for generating
oscillations involves feedback circuits composed of a ring of
elements, each of which either inhibits or activates the next
element in the ring. Situations in which there are an odd
number of inhibitory interactions often display stable limit
cycle oscillations. Elowitz and Leibler18 implemented this
type of circuit in bacteria by constructing an inhibitory ring
of three genes. Each gene coded for a transcription factor
that in turn inhibited the synthesis of the next gene in the
ring, Fig. 2~A!. The network was constructed using plasmids
in E. coli, and the dynamics were monitored using green
fluorescent protein~GFP! that was under control of the tran-
scriptional circuit. The resulting network, called the repressi-
lator, exhibited oscillations in the expression of GFP. A dif-
ferential equation of the form in Eq.~2! shows stable limit
cycle oscillations with period 2.887... wheng i51.22

As a first test for our circuit, we implemented a network
that had the same logical structure as the repressilator.22 The
truth table for this corresponding network is shown in Fig.
2~B!. The network has a stable oscillation, shown in Fig.
2~C!. Taking into account the time constant for our circuit,
we compute that the period of the limit cycle oscillation in
the circuit would be 28.87 ms, provided all the time con-
stants are equal, and the thresholds of all switches are exactly
2.5 V. In the current case, measurement of the time constants
show that they differ from the rated 10 ms by up to 6%, and
that the thresholds are approximately 2.1 V. These small dif-
ferences lead to a period of the digital–analog repressilator
circuit of approximately 29.5 ms. The pattern of oscillation
in the circuit is similar to that observed in the repressilator
and in differential equation models of the repressilator.18,22

C. More complex oscillations in a five-gene network

A five-gene network is capable of an extremely rich va-
riety of oscillatory behaviors. Examples of two truth tables
and their corresponding dynamics are shown in Fig. 3. For
compactness, the truth tables are written in the following

way: all combinations of four inputs for any individual net-
work element are given on the left, and the logic functions
represented by the five elements are given in columns
B1–B5 on the right. Recalling that each element receives
input from the other four elements with no self-input, the
four inputs on the right correspond to inputs from elements
1, 2, 3, 4, and 5, minus the element in question. In other
words, for element 1, inputs 1–4 come from elements 2–5,
respectively. For element 2, inputs 1–4 come from elements
1, 3, 4, and 5, respectively, and so on. As seen in Fig. 3, it
would be difficult to predict these dynamics based on the
logic of the network.

IV. SEARCHING FOR COMPLEX OSCILLATIONS IN
THE ELECTRONIC CIRCUIT

We set a search task of finding networks that display
complex oscillations which occur infrequently by chance. To
do this, we first carried out a survey of the distribution of the
periods of randomly generated networks. Figure 4 shows a
histogram displaying the periods found in the circuit for 300
randomly generated networks. There are a comparatively
small number of networks with periods greater than 60 ms.
Based on this observation, we selected a target period, de-
noted T* , of 80 ms (65 ms) as the target period for our
search procedure.

Evolution was implemented in the following manner.
Random networks were generated until a network displayed
periodic dynamics. Then a random local search was initiated.
For each element in the truth table, a random number was
generated. If this random number was less than the mutation
rate, calledr, then a random 1 or 0 replaced that element in
the truth table. This led to truth table mutations at an average
rate of r/2. In each generation, there was only one ‘‘prog-
eny.’’ If the progeny had a limit cycle oscillation whose pe-
riod was the same as the period of the parent or closer to the

FIG. 2. ~Color! ~A! Schematic diagram of the repressilator.~B! Truth table
for the repressilator.~C! Dynamics of the digital–analog repressilator cir-
cuit. There is a stable oscillation with period 29.5 ms.
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target than the period of the parent, then future evolution was
carried out from its truth table. Otherwise, evolution was
carried out using the truth table of the parent.

Figure 5 shows the results of a typical evolution trial.
The initial period of the circuit was 27.0 ms. The period
increases through a series of plateaus of different heights and
durations, and at the end of 540 trials achieves a period of
75.5 ms. The observed oscillation of the final network differs
considerably from that of the initial circuit. The course of
evolution in each run was different, and the final circuits
obtained are also typically different. Even though a small
percentage~about 2%–3%! of the possible networks show
stable oscillations, this is still a very large number of circuits
displaying stable limit cycles.

Figure 6 compares the average results of 25 trials for
several different rates of evolution. Each trial was carried out

FIG. 3. ~Color! The truth tables and data for two different networks. To read the truth tables, recall that each element receives four inputs~one from each other
element, with no self input!. For each element, then, inputs 1–4 represent inputs from the five elements minus itself. For example, for element 3, inputs 1–5
come from elements 1, 2, 4, and 5, respectively. The logic function defined for each element in the circuit, 1–5, is given byB1 throughB5 on the right side
of the truth table.

FIG. 4. Histogram showing the periods of stable limit cycle oscillations in
the electronic circuit based on an analysis of 300 randomly generated net-
works which display limit cycle oscillations. A period of oscillation for a
network in the differential equation literature must be multiplied by approxi-
mately 10 to find the comparable period in ms for the electronic circuit. The
percentage of randomly generated networks showing stable oscillations is
approximately 2.8%.
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for 250 generations. These results demonstrate that the ap-
proach to the target is maximally fast for a mutation rate of
r55% – 10%.

V. DETERMINATION OF THE FITNESS LANDSCAPE

One of the main theoretical means for understanding
evolution in biological systems and model systems is to con-
struct the fitness landscape, a graph in which the vertices
represent the different genetic makeup of organisms. A fit-
ness is associated with each vertex, where the fitness reflects

the relative ability of the organism to compete with other
organisms. Higher fitnesses are associated with organisms
that tend to outcompete other organisms of the same species.
Various models of the fitness landscape have been proposed
and features such as the number of local maxima and the
mean path length from any state to its nearest local maxima
have been computed; for example, see Refs. 30, 36–38, and
references therein.

For our circuit, the fitness landscape is an 80-
dimensional Boolean hypercube where each of the 280 verti-
ces represents a different truth table for the network. The
Hamming distance between two Boolean vectors of the same
length represents the number of loci in which the two vectors
differ. Consequently, in the Boolean hypercube, vertices that
share a common edge represent states with a Hamming dis-
tance of one, vertices separated by two edges represent states
with a Hamming distance of two, and so forth. Networks that
do not give rise to periodic dynamics have fitness 0. The
fitness of a given network with periodT and target periodT*
is inversely proportional touT2T* u. We sampled the fitness
landscape in the neighborhood of many different periodic
networks. Random networks were generated until a network
displayed periodic dynamics.

Once a network which displayed periodic dynamics was
randomly generated, the effects of flipping a fixed number of
truth table entries were determined. All 80 truth tables with a
Hamming distance of one from the parent network were
sampled. One thousand randomly selected networks that lie

FIG. 5. ~Color! Typical example of evolution of the limit cycle oscillation in the electronic circuit. The three traces in the left panel show the increases in
period of the network in three different runs as the network evolves towards the goal. Each run begins with the same initial network, whose dynamics are
displayed in panel A. Panels B and C show the dynamics of an intermediate network and the ending network, respectively, for one of these runs. The colored
traces in panels A, B, and C represent the output of the five network elements. Both the complexity of the oscillation and the period increase during evolution,
and the dynamics of the final network differs dramatically from that of the initial network.

FIG. 6. ~Color! Evolution of the electronic circuit~schematically repre-
sented in Fig. 1! for different mutation ratesr. The average deviation of the
period from the target valueT* 580 ms is plotted as a function of genera-
tion number.
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Hamming distancesk52 – 10, 15, 20, and 25, from the par-
ent network were also sampled. We repeated this process for
10 different periodic networks at each condition, and deter-
mined the mean fitness and fraction of periodic networks for
each condition.

To study properties of the random local search in these
networks, we developed an approximate characterization of
the fitness landscape. Letk represent the Hamming distance
of a network from another network displaying a stable peri-
odic cycle. The fitness landscape is characterized by two
functions:f (k), which is the fraction of networks displaying
periodicity, andg(k), the average improvement in the period
of a progeny network displaying a stable limit cycle towards
the target period. Ask increases,f (k) decreases andg(k)
increases. These data are shown with standard errors in Fig.
7 and were fit to exponential functions~solid lines!.

The probability that any given element of the truth table
will change given the mutation rater is r/2. Using the bino-
mial theorem in a truth table ofN entries, the fraction of
truth tables that are a Hamming distancek from the initial
network,F(N,k,r) is

F~N,k,r!5S N
k D S r

2D kS 12
r

2D N2k

. ~4!

Using this result, we can compute the expected mean im-
provement per generationD~r!

D~r!5(
k

f ~k!g~k!F~N,k,r!. ~5!

The results are shown in Fig. 8. Based on the above compu-
tation, the search towards the target period is predicted to be
most rapid forr'0.08. This is in agreement with the experi-
mental data in Fig. 6.

Figure 7 shows that while there is a small amount of
variation of each data point forf (k), there is considerably
more variation in the values of the data points forg(k). This
occurs since we only sample a small portion of the networks
a Hamming distancek away from a given network, and ask
increases, the standard error also increases. Consequently,
many different functional forms could have been used to fit
g(k) in Fig. 7. However, choosing other functional forms
such as a second-order polynomial or Gaussian forg(k) also
yield optimal mutation rates approximately the same as the
one found using the exponential fit.

VI. DISCUSSION

In biological systems, stable oscillations are commonly
exhibited, but it is unclear how these dynamics can arise and
evolve. The present work shows that robust physically real-
izable oscillations can arise quite easily in model genetic
networks, and that such networks can be modified to produce
oscillations of different periods. Further, by analyzing the
fitness landscape in the neighborhood of periodic networks,
we demonstrate that the search procedure is optimized for an
intermediate mutation rate~Fig. 8!.

In the evolution runs carried out in this work, the circuit
starts each trial with with each element at a low voltage near
zero in the low logic state. Therefore, during all evolutionary
trials, the period of a particular network was the period start-
ing from this initial condition. As we demonstrate, we obtain
an approach to the target period using this scheme. However,
these networks can also display more than one attractor start-
ing from different initial conditions. Consequently, it would
be of interest to analyze the evolution rates, if at any trial we
selected the best period possible from some limited subset of
initial conditions.

We think that this system, in which there is a precisely
defined fitness landscape for a real physical system, poses an
interesting model for further theoretical analysis. In this sys-
tem, there are a large number of good solutions that are
sparsely scattered through the space of all possible networks.
As a consequence, in contrast to recent theoretical results in
which there is an evolution through adjacent states to a local

FIG. 7. The fraction of periodic networks,f (k), and the average improve-
ment in period of a periodic network,g(k), as a function of the Hamming
distancek of a network from its parent. The error bars show the standard
error and the solid curves represent fits to exponential functions.

FIG. 8. The expected improvement per generation,D~r!, as a function of the
mutation rater.
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maximum after a small number of steps,37 the evolution in
the current model occurs over many intermediates with long
plateaus, to one of a large number of possible end states~Fig.
5!. The discontinuous changes in dynamic behavior, are
similar to the discontinuous evolution that has been observed
in many different biological systems, e.g., see Ref. 39, and
references therein. In the current case, the discontinuous
changes in the period reflect the combined effects of neutral
mutations that do not lead to a change in the period and other
mutations that lead to large changes in the period.

The data in Fig. 7 indicate that the fitness landscapes are
correlated, so that in the neighborhood of a network display-
ing periodic dynamics, there tend to be a high density of
periodic networks with a similar period. For correlated fit-
ness landscapes, optimal mutation schemes would incorpo-
rate a mutation rate inversely proportional to the fitness,
similar to observed mutation rates in other biological and
model systems.38 It would also be interesting to study evo-
lutionary schemes based on genetic algorithms,40 and
schemes that allow the possibility of detrimental mutations.

The current work is also relevant to nonlinear dynamics.
In addition to the periodic dynamics that we have described
in the current paper, we anticipate that the circuit would sup-
port chaotic dynamics, since Eq.~2! does.21,24Thus, it would
be interesting to study the dynamics obtained when the truth
tables or time constants of networks displaying chaos are
varied. Just as there are families of networks displaying
closely related types of periodic oscillations, there might be
families of networks that display closely related chaotic
dynamics,22,25 and it might be possible to evolve networks
displaying chaotic dynamics with specified dynamical prop-
erties.

This work shows that it is possible to evolve electronic
networks with desired dynamics without needing to design
the circuit architecture from the outset. This has implications
for engineering since it shows that it should be possible to
develop autonomous electronic circuits that evolve their dy-
namics, based upon environmental demands, by changing the
logical structure of the network without reconfiguring its
hardware. Moreover, because of the intimate connection be-
tween our circuits and genetic networks, it may be feasible to
adapt these methods to evolve genetic oscillators. Indeed, we
think that this work represents an important middle ground
between more theoretical work21,22 and more biological
work.12,15,18 Further, since the building blocks of our net-
works depend on functions that can be implemented using
the binding of transcription factors to DNA, the current work
also shows how complex biological functions may have
evolved dynamic behaviors even though the combinatorial
complexity of possible network states is astronomical.
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