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All cells of living organisms contain similar genetic instructions encoded in the organism’s DNA.

In any particular cell, the control of the expression of each different gene is regulated, in part, by

binding of molecular complexes to specific regions of the DNA. The molecular complexes are

composed of protein molecules, called transcription factors, combined with various other

molecules such as hormones and drugs. Since transcription factors are coded by genes, cellular

function is partially determined by genetic networks. Recent research is making large strides to

understand both the structure and the function of these networks. Further, the emerging discipline

of synthetic biology is engineering novel gene circuits with specific dynamic properties to advance

both basic science and potential practical applications. Although there is not yet a universally

accepted mathematical framework for studying the properties of genetic networks, the strong

analogies between the activation and inhibition of gene expression and electric circuits suggest

frameworks based on logical switching circuits. This focus issue provides a selection of papers

reflecting current research directions in the quantitative analysis of genetic networks. The work

extends from molecular models for the binding of proteins, to realistic detailed models of cellular

metabolism. Between these extremes are simplified models in which genetic dynamics are modeled

using classical methods of systems engineering, Boolean switching networks, differential equations

that are continuous analogues of Boolean switching networks, and differential equations in which

control is based on power law functions. The mathematical techniques are applied to study:

(i) naturally occurring gene networks in living organisms including: cyanobacteria, Mycoplasma
genitalium, fruit flies, immune cells in mammals; (ii) synthetic gene circuits in Escherichia coli
and yeast; and (iii) electronic circuits modeling genetic networks using field-programmable gate

arrays. Mathematical analyses will be essential for understanding naturally occurring genetic

networks in diverse organisms and for providing a foundation for the improved development of

synthetic genetic networks. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4810923]

“These examples should suffice to show, that by the use of

the principles which they illustrate, any number of sys-

tems may be interconnected into regulatory circuits

endowed with virtually any desired property.” Monod

and Jacob (1961)1

“The next generation of students should learn how to

look for amplifiers and logic circuits, as well as to

describe and look for molecules and genes.” Hartwell,

Hopfield, Leibler, Murray (1999)
2

“Transcription factors bind in a combinatorial fash-

ion to specify the on-and-off states of genes; the ensemble

of these binding events forms a regulatory network, con-

stituting the wiring diagram for a cell.” Gerstein et al.
(2012)3

I. INTRODUCTION

Over 50 years ago, Monod and Jacob argued that the

mechanisms controlling expression of individual genes in bac-

teria could be interconnected to generate genetic regulatory cir-

cuits that would underlie vital functions including oscillation

and differentiation.1 The basic idea was that a diffusible pro-

tein, called a transcription factor, which is coded by one gene,

could bind to the DNA molecule to modulate the rate of pro-

duction of itself or other genes. Thus, the DNA combined with

the transcription factors generated networks where the nodes

of the network were the genes, and the transcription factors led

to interactions between the genes. Although Jacob and Monod

did not provide mathematical analyses, their prescient sugges-

tions provided a basis for theoretical models of genetic control

in terms of logical switching networks in which the logical

states of genes updated following specific delays4–6 or in

which there was synchronous updating of all variables.7

Alternatively, the logical structure and relationships could be

embedded in differential equations8 as either discontinuous

switching functions or sigmoidal functions.

Subsequent to these early papers, there has been a

continuing research in theoretical models of genetic net-

works.9,10 However, sparked by advances in molecular

biology and synthetic biology,11,12 there has been an accel-

erating interest in these theoretical models. This Focus

issue gives an overview of many of the important advances

and current research directions. In Sec. II, we summarize

the theoretical approaches to the analysis of models of

genetic networks that are of particular interest to the non-

linear dynamics community. We discuss the applications of

theoretical approaches to analysis of naturally occurring
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biological systems in Sec. III and to synthetic biology in

Sec. IV.

II. MATHEMATICAL MODELS OF GENETIC
NETWORKS

A. Structure of genetic networks

Recent years have witnessed an explosive interest in the

properties of complex networks.13 We briefly review this

material focusing on its relevance to genetic networks.

First some basic terminology: Graphs are composed of

vertices (or nodes) and edges. An edge connects two verti-

ces. The degree of a vertex is the number of edges at that

vertex. In some instances, edges may be directed, indicating

that one node influences a second node or that there is a flow

from one node to another node. In the random Erdos-Renyi

graph, there are N vertices and a given number of edges

connecting randomly chosen vertices. Examination of real-

world networks in the 1990s led to the recognition that

most real graphs for naturally occurring systems are not

random.14,15 One type of deviation from randomness in

naturally occurring networks is that the distribution of the

degrees of vertices follows a power law (it is scale free)

rather than an expected Poisson distribution.

Determination of global network topologies of naturally

occurring genetic networks is an important area of research16

in which emerging techniques have been enabled by a large

number of new technologies.17 A significant number of

networks formed by gene products, including protein interac-

tion networks,18,19 signal transduction networks,20 and

transcriptional regulatory networks,3,17,21,22 exhibit a high

heterogeneity of node degrees. For example, for the yeast

transcriptional regulatory network, the distribution of the

out-degree of genes appears to be a power law, whereas the

in-degree distribution appears to decay exponentially with

over 90% of genes being regulated by 1–4 transcription

factors.21 However, these findings will need to be examined

as technologies for determining interactions become more

refined.

In addition to the global network topology, one also can

identify recurring interaction motifs, which are small sub-

graphs that have well-defined topologies.23 Interaction

motifs such as autoregulation and feed-forward loops,24,25

or triangles of protein interactions18,20,26 have a higher fre-

quency than expected based on the subgraph statistics of

comparable randomly generated networks with similar

degree distributions. Moreover, exhaustive analysis of the

dynamic behaviors supported by three and four-node motifs

revealed that dynamical stability to small perturbations in

node states is highly correlated with the relative frequency of

these motifs.27 These observations support the notion that

interaction motifs form functional building blocks of cellular

networks.23 In the current issue, Phenix et al. carry out simu-

lations to analyze the effects of gene deletions on the expres-

sion of a trait. They consider all different two-gene network

motifs with arbitrary regulation functions. These results

should be useful in determining network topologies based on

experiments in which the effect of having two genes deleted

is similar to the effect of having a single gene deleted.28

Also in this issue, Kadelka et al. analyze the way feedfor-

ward loop motifs could play a role in reducing the effects of

noise and stabilizing global dynamics.29

Although emerging technologies are offering the pros-

pect of determining the architecture of genetic control

networks,3 the actual structures or control parameters are not

known. Consequently, researchers have focused on the anal-

ysis of simplified theoretical models. In the remainder of this

section, we review simplified theoretical models of genetic

networks: synchronous Boolean switching networks,

Boolean delay networks, asynchronous logical networks, and

differential equation models. In Sec. V, we discuss future

prospects for quantitative approaches to genetic networks.

B. Synchronous Boolean switching networks

Kauffman proposed that genetic networks could be

modeled as synchronous Boolean switching devices and con-

sidered idealized models consisting of N genes, each with k
randomly chosen inputs from other genes in the network.

The inputs to a gene combine to control the output of a gene

by a randomly chosen Boolean function.7,30 All genes were

updated synchronously, such that

Xiðtþ 1Þ ¼ BiðXðtÞÞ; i ¼ 1;N; (1)

where XiðtÞ 2 ½0; 1� is a Boolean variable, X(t), is a Boolean

state vector with N components, Bi is the truth table for the

ith gene, and t is a discrete time. In the original work, each

Bi depended on k inputs. Kauffman carried out simulations

to determine the number of attractors in networks as a func-

tion of N and k. In this context, the different attractors corre-

sponded to different cell types. Kauffman found that for

networks with k¼ 2, the number of attractors increased

roughly proportional to
ffiffiffiffi

N
p

—thus there was an incredible

focusing of the 2N states in the Boolean state space to a small

number of attractors. There was even a quantitative match-

ing—the hundreds of different types of cells arose as attrac-

tors from tens of thousands of genes. Although further

computations have shown the number of attractors in

Kauffman networks with k¼ 2 grows superlinearly,31 the ba-

sic identification of attractors in mathematical models of

genetic networks with cell types is one of the basic premises

of theoretical analyses.

Because of the strikingly simple structure of Kauffman

networks, they have attracted broad interest from theoreti-

cians, especially statistical physicists. Derrida and Pomeau32

analyzed statistical properties of trajectories as a function of

k. Assuming a randomly constructed network, two initial

states that differ by a Hamming distance of 1 will in general

converge for k < 2 and diverge for k > 2. This finding has

led to the characterization of an “order-disorder” transition

with the value k¼ 2 lying on a “critical” boundary. Although

the disordered phase is sometimes called “chaotic,” from the

perspective of nonlinear dynamics, for systems with finite N,

all dynamics must eventually cycle (i.e., they cannot be

“chaotic” which implies aperiodicity). These early findings

have been extended in a large number of ways by
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considering the effects of network structure and Boolean rule

structure on the dynamics.33–36

C. Boolean delay networks

Despite the theoretical interest of the properties of

synchronous Boolean networks, most work directed at

developing models that can be used for biological systems

has relaxed the requirements of synchronicity in a variety

of different ways. The earliest suggestions for theoretical

models proposed Boolean delay equations4–6 in which tran-

sitions between states followed logical rules, but occurred

following a fixed delay. Early studies by Ghil and

Mullhaupt37 formalized such systems mathematically and

discovered that some simple networks display chaotic dy-

namics. These theoretical results have recently motivated

the construction of analogue devices using field program-

mable array devices, called autonomous Boolean networks,

which simulated the Boolean delay equations and experi-

mentally demonstrated chaotic dynamics.38 In the current

issue, Sun et al. extend the class of Boolean delay networks

by assigning different delays for both the onswitch and the

offswitch and use this to determine the dynamics of a model

system comprised of a positive and a negative feedback

loop.39 In addition, Rosin et al. carry out experimental stud-

ies demonstrating both periodic dynamics and chaotic dy-

namics in autonomous Boolean networks synthesized with

field programmable arrays.40 This class of experimental

systems offers the promise of developing analogue models

for large genetic networks.

D. Asynchronous logical networks and nonlinear
differential equations

Synchronous Boolean network models represent an

extreme idealization of real networks. Although introducing

fixed delays that differ for the different elements destroys the

synchronous updating, it is more common to generate asyn-

chronous networks using other means.41,42

A fundamental question is to be able to predict qualita-

tive dynamics of the networks based on the logical structure

of the network. Many early simulation studies demonstrated

that negative feedback loops (with an odd number of inhibi-

tory interactions) could generate oscillations and positive

feedback loops (with an even number of inhibitory interac-

tions) could generate bistability. Based on these observa-

tions, Thomas and colleagues conjectured that a necessary

condition for oscillation is the presence of a negative feed-

back loop and a necessary condition for bistability is a

positive feedback loop43,44 and proofs are possible in some

situations.45–47 Although application of this result to net-

works with comparatively simple interactions and structure

is straightforward, if genes have multiple inputs and complex

Boolean functions, interactions between two genes may be

either positive or negative depending on the states of other

genes. In the current issue, Zanudo and Albert propose a

refined criterion for identifying the qualitative dynamics of

networks based on their logical structure. Specifically, they

identify a class of complex cycles in an augmented represen-

tation of the network and show that the nodes that participate

in these cycles will reach a steady state. This information

can be used as part of an iterative network reduction process

that yields the steady states of the system.48

To further analyze the connection between the logic and

the dynamics of genetic networks, a new construct called the

state transition diagram (or graph) is needed. Assuming that

the Boolean states of a system are the nodes of a graph, the

state transition diagram (or graph) is a directed graph show-

ing the transitions allowed between each pair of two

states.8,41,49 The state transition diagram can be constructed

for synchronous updating schemes or asynchronous updating

schemes. In some situations where a given gene controls mul-

tiple downstream targets at different thresholds, it is common

to extend the transition diagram to allow more than two states

per gene.42 Since this situation could be accommodated by

reformulating the original network as a higher dimensional

network with a single threshold for each element,50 for con-

venience, we assume a single threshold per gene.

Since generically only one variable can switch at any

time, the Hamming distance between each two connected

vertices in the graph is one. As a consequence, the graph of

the state transition diagram for asynchronous Boolean net-

works is a directed graph on an N-dimensional hypercube

(for the case of N genes). For the special case in which no

element of the network has an input from itself, each edge of

the truth table is oriented in a unique orientation, and there is

a 1–1 correspondence between directed graphs on the N-

cube, and logical switching networks with no self-input.41

The state transition diagram enables techniques from discrete

mathematics. For example, in the 4096 different networks

composed of three genes with no self input,51 8 represent

negative feedback systems (such as the repressilator11)

expected to show stable limit cycle oscillations.41 As the

number of genes increases, there is a combinatorial explo-

sion of different possible networks.52 This huge number of

networks, coupled with the exponential increase of the num-

ber of the states of the system, makes clear the need for theo-

retical methods to analyze the dynamics. In the current issue,

Berenguier et al. describe a method to coarse-grain state

transition diagrams while generating them from simulations.

This method preserves the essential features of the diagram

while drastically reducing its size.53

This state transition diagram holds for various types

of asynchronous switching including: assuming updating

according to some predetermined sequence,54 stochastic

updating,54 or alternatively, by embedding the underlying

logical structure in differential equations.8 Consequently, for

any of these classes of dynamical models, the following

statements hold:8,41,42,55–57

• In-vertices of the state transition diagram are associated

with a stable steady state in the associated dynamical

system.
• A necessary condition for a periodic solution is a cycle in

the state transition diagram.
• A necessary condition for chaotic dynamics is a vertex

that is on at least two different cycles.
• An upper limit on the topological entropy of the dynamics

can be determined based on the state transition diagram.
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Further, since there is a 1–1 correspondence between

edges in the state transition diagram and entries in the truth

table, observation of dynamics enables one to reverse engi-

neer a network and determine the logical network generating

some complex dynamical behavior.58

One class of models are piecewise linear equations that

are generated from Eq. (1):8

dxi

dt
¼ �cixi þ kiBiðXÞ; (2)

where for each continuous variable xi, there is an associated

logical variable Xi, such that Xi ¼ Hðxi � hiÞ, where H(y) is

the Heaviside step function which equals 0 for negative argu-

ments and is otherwise 1. Further ki=ci > hi, where ki is a

production constant, ci is a decay constant, and hi is a thresh-

old. For the condition when all ci are equal, for networks

whose state transition diagram has a stable attracting cycle,

the asymptotic dynamics for all initial conditions in regions

of phase space associated with the cycle are either an asymp-

totic oscillatory approach to a threshold intersection or a

stable, unique limit cycle oscillation.59–61 This result can be

proven from the properties of the return map,57 which can be

explicitly computed due to the piecewise linear nature of

the equations. Similar results have been obtained in some

circumstances when the ci are not all equal.62 Analytic com-

putation of the return map sometimes permits strong

insight into the origin of chaotic dynamics for particular

examples of Eq. (2)61,63,64 and explicit proof of chaos by

construction.50

As mentioned earlier, the order-disorder transition in

Boolean networks with synchronous updating has been stud-

ied intensively for a variety of different network models.32–36

However, for the piecewise linear equations, we know of

only one paper that studied this transition.65 This was accom-

plished by changing the percentage of 1 s in the truth tables.

In the piecewise linear equations, the definition of chaotic

dynamics is consistent with the nonlinear dynamics require-

ments of chaos including aperiodic dynamics and sensitive

dependence to initial conditions in systems with finite num-

bers of variables. As the percentage of 1 s in the truth table

increases from 0.5 towards 1, there is a transition. The per-

centage of networks that display chaotic dynamics decreases

and the percentage of networks that display steady states

increases. As N increases the transition between the regions

gets increasingly sharp and there is an intervening zone in

which many networks display periodic dynamics.65

By substituting continuous sigmoidal functions for the

Heaviside step functions one obtains nonlinear equations. In

numerical studies, limit cycles were preserved in equations

with stable limit cycle oscillations when sigmoidal functions

are substituted for step functions.59 Theoretical results show

that provided certain technical conditions hold, the qualita-

tive dynamics will be preserved in Eq. (2) when steep contin-

uous functions are substituted for the step functions.66

Due to the discontinuous right hand side of the piece-

wise linear models of genetic networks, there are also a vari-

ety of pathological situations that can arise in which the

trajectories on the boundaries between two orthants in phase

space are not well defined or in which the simultaneous

switching of variables on a threshold boundary leads to am-

biguity. Equations of this class have attracted interest both

for the mathematical aspects and also because they arise in a

large number of different practical applications.67,68 In gene

networks, autoregulation is one situation that leads to these

types of singular dynamics. In the context of gene networks,

Gouz�e and collaborators have investigated properties of the

piecewise linear equations using approaches developed by

Filippov.69 An alternative approach developed by Plahte and

collaborators replaces step functions by steep sigmoids and

uses singular perturbation theory to analyze dynamics as the

sigmoids become infinitely steep.66,70,71 In the current issue,

Machina et al. examine a toy model demonstrating that rapid

cycling in the neighborhood of thresholds can lead to densely

interwoven basins of attraction of different attractors, and

thus to sensitivity of asymptotic dynamics to the initial

condition.72 In order to develop general purpose software

for qualitative analysis of gene network dynamics, these

technical problems must be recognized and appropriately

handled.71,73,74

An interesting question is the extent to which different

classes of models might offer differing perspectives and

insights on a given network. In this issue, Chaves and Preto

consider how Boolean models, piecewise linear ordinary dif-

ferential equations, and fully nonlinear differential equations

can all be used to help understand and model dynamics in a

circadian rhythm oscillation.75 The simpler models can help

to fix the gross structure and help in developing the refined

model, where the unifying theme is the state transition dia-

gram which is invariant for all three classes of model. In con-

trast, Sun et al. describe a model system with positive and

negative feedback and show that two oscillations that reflect

different mechanisms of oscillation when considered from

the perspective of a Boolean delay network may correspond

to the same symbolic sequences in the state transition

diagram.39

III. ANALYSIS OF NATURALLY OCCURRING GENETIC
NETWORKS

Several different classes of models have been used for

the analysis of naturally occurring genetic networks.

Determination of the appropriate model for any given net-

work necessarily involves combining theoretical analysis

with experimental studies to determine the relevant tran-

scription factors, the ways in which their production is con-

trolled, and the targets of the transcription factors. Even

though the main objective of the current issue is to survey

the analysis of network structures, the theoretical analysis of

each aspect of the network faces strong challenges. For

example, as discussed in this issue, at subcellular level the

binding of transcription factors to the DNA molecules

presents significant challenges for both experimental and

theoretical analyses.76

Logical models provide a simplified way to capture the

main genes, the transcription factors, and their interactions

without specifying the detailed kinetics. An early example is

the analysis of bacteriophage lambda that showed how the
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interaction of both positive and negative feedback loops

were necessary to understand the interaction of the virus

with a bacterium and whether the virus would cause lysis of

the bacterium or would incorporate into the bacterium’s

genome leading to the state of lysogeny.77 In the current

issue, Chaves and Preto provide a case study of how to go

from logical models, to piecewise linear models, to more

realistic nonlinear kinetic models in the analysis of the circa-

dian rhythm in cyanobacteria.75

In higher organisms in which gene control may involve

interactions between multiple factors, it seems likely that

understanding of behavior will only be possible with the de-

velopment of models that combine qualitative and quantita-

tive features. Developmental biology provides compelling

scientific problems involving both time and space. Early

examples include models that demonstrated how the interac-

tion of 11 genes could lead to multiple cell types involved

in flower morphogenesis78 and studies that analyzed the

factors regulating control of a single gene in sea urchin

development.79,80 Discoveries of remarkable organization in

the geometric arrangements of expression of transcriptions fac-

tors in early development of insects has led to the development

of mathematical models based on logical interactions81–85 as

well as partial differential equations in which transcriptional

control is based on neural network or logical interactions.86–88

In the current issue, Kim et al. combine biological studies with

mathematical modeling to partially dissect mechanisms con-

trolling the expression of one gene (tailless) involved in early

development in Drosophila.89

IV. SYNTHETIC BIOLOGY

Synthetic biology is an exciting new field bringing

together engineers, physicists, mathematicians, and biolo-

gists to design, model, and construct synthetic gene net-

works, and to use these networks to rewire and reprogram

organisms, endowing them with novel functions for a range

of applications.90–92 Initial studies led to the synthesis of

gene circuits with predictable behavior including the toggle

switch,12 the repressilator—an oscillating network,11 and a

stable negative feedback system.93 In all these cases, nonlin-

ear dynamical models provide a theoretical foundation for

understanding the observed dynamics. For the toggle switch

and the repressilator, logical models5,8 provide a conceptu-

ally simple way to predict the emergent dynamics based on

the network architecture. Further, for the development of the

genetic toggle switch,12 modeling work preceded and guided

the design and construction phases. Specifically, the toggle

design made use of a mathematical model to deduce the

parameter regimes and criteria required for bistability and

robust switching. These criteria included balanced and strong

constitutive promoters, effective transcriptional repression,

and the formation of repressor protein multimers with similar

degradation rates.

Subsequent to these initial founding papers in synthetic

biology, there has been an accelerating interest in the area

with significant achievements including development of: tun-

able oscillators;94,95 tunable mammalian switches utilizing

RNA interference to enable selective regulation of any

gene;96 bacterial systems capable of detecting light edges

projected into the bacterial culture;97 networks capable of

counting cellular metabolic events;98 circuits that lead to dif-

ferential gene expression based on past events and therefore

act as memory devices;99 genetic circuits for oscillation and

toggle switches that can function in vitro and do not need to

be inserted in living cells;100,101 synthesis of combinatorial

controllers capable of realizing various logical func-

tions.102,103 With few exceptions (e.g., Ref. 99), these papers

report nonlinear dynamic models that reproduce the observed

dynamics. However, despite these impressive advances, the

basic task of constructing a predictable gene network from

biomolecular components is still far from straightforward,

usually requiring significant molecular biology expertise and

many months before a new network with acceptable behavior

is realized.104,105 In this issue, Purcell et al. raise the impor-

tant question of understanding the interaction between the

dynamics of a synthetic gene network oscillator and the

intrinsic dynamics engineered in Mycoplasm genitalium.106

They believe that in some cases, it will be necessary to de-

velop detailed theoretical models of the whole cell dynamics

in order to understand the dynamics of both the synthetic

oscillator and of the host cell.

Another aspect of synthetic biology is to understand the

interaction of the engineered organism with the environment.

Although biological systems would appear to be intrinsically

nonlinear, classical methods of system identification can be

effective in understanding the effects of environmental

changes on organisms.107 In the current issue, Fiore et al.
show that systems identification methods can be used to

analyze the response of yeast to periodic changes in the sugar

concentrations in the growth medium.108 However, under

periodic stimulation, synthetic genetic oscillators are

expected to have a number of properties, such as entrainment

and chaotic dynamics, which would not be predicted using

traditional systems identification techniques.109 Using a

micro-fluidic device, Fiore et al. study the dynamics of a

synthetic genetic oscillator and compare observed dynamics

with theoretical predictions.110

V. THE FUTURE OF GENETIC NETWORKS

Emerging technologies have generated vast amount of

data concerning the structure and function of the genetic net-

works that underlie the existence of all life on earth. Amidst

the sea of data, scientists are now searching for unifying

principles and methodologies that can be used to understand

the organization of the networks and to provide techniques

that could be used to modify or synthesize genetic networks

for a variety of practical purposes.

As suggested by the quotations at the start of this article,

analogies between logical circuits and genetic networks now

provide a main direction for theoretical analysis of genetic

networks and several articles in this issue consider different

aspects of this approach.39,40,48,53,72,75 However, as these

articles make clear, current approaches are not adequate

to deal with many of the practical problems confronted by

real networks. In particular, better methods are needed to

understand the relationships between structure and dynamics
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in very large networks;48,53 time delays due to physical proc-

esses of synthesis or diffusion can play a major role in deter-

mining the dynamics,39,40 transcription factors do not have

on-off control and may have different thresholds for different

processes so that strictly Boolean logic may not be suita-

ble.75 In view of these difficulties, it is possible that the

current formalism that stresses the analogy with logical net-

works will be succeeded by alternative formulations. One

such formulation uses a neural network in which the concen-

trations of excitatory and inhibitory transcription factors are

added together in a weighted sum in order to determine their

influence on transcriptional control.87,89 In another approach,

kinetic equations for genetic networks are described by func-

tions based on polynomial expressions.111 Of course, it is

also possible that simplified models will not offer adequate

insights and that emerging theory will require realistic mod-

els for subcellular76 or cellular106 processes.

Independent of the class of theoretical model that proves

most useful to understand the structure of genetic networks,

a profound problem involves the comparative structure of

genetic networks in different organisms and the evolution of

these networks. DNA binding sites for transcription factors

appear to be conserved in different species89 and this can be

an important clue in helping to decode mechanisms of tran-

scriptional control in different species. Yet, it seems that the

principles underlying the evolution of genetic networks are

still scarcely understood.112

Finally, the emergence of synthetic biology provides a

critical interface for theoretical and experimental approaches

to analysis of genetic networks. Synthetic biology would ben-

efit tremendously from the development of more effective

modeling approaches that increase the predictability of gene

network engineering and thereby decrease the need for exten-

sive post-hoc tweaking to get a functional network up and

running. Typically current approaches in synthetic biology

rely on using a small set of biomolecular components plun-

dered from different natural systems, which are then con-

structed and analyzed in vivo. This design-build-test cycle is

often carried out without guidance from a priori mathematical

modeling. In the small number of instances which do utilize

computational assistance, mathematical predictions are sel-

dom a practical, quantitative tool to guide the engineering of

gene networks that rely on a delicate variety of component

properties. Modeling efforts are mainly used for data interpre-

tation, rather than for guiding design and construction.

Enhanced modeling platforms, which are coupled to charac-

terized libraries of biomolecular components, could serve to

fast-track design efforts in synthetic biology, accelerating the

rational development of functional gene circuits.102
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