
Methods
BioAutoMATED: An end-to
-end automated machine
learning tool for explanation and design of biological
sequences
Highlights
d We build a platform to automate machine-learning model

search and optimization

d BioAutoMATED enables model interpretation and computer-

aided design of sequences

d We benchmark BioAutoMATED on diverse datasets and

generate biological insights

d Design decisions are abstracted for biologists with limited

machine learning expertise
Valeri et al., 2023, Cell Systems 14, 525–542
June 21, 2023 ª 2023 The Author(s). Published by Elsevier Inc.
https://doi.org/10.1016/j.cels.2023.05.007
Authors

Jacqueline A. Valeri, Luis R. Soenksen,

Katherine M. Collins, ..., Felix Wong,

Timothy K. Lu, James J. Collins

Correspondence
jimjc@mit.edu

In brief

Valeri, Soenksen, Collins et al. develop a

platform called BioAutoMATED that

automates end-to-end machine learning

for biological sequences by integrating

three automated machine learning tools.

With BioAutoMATED, researchers can

automatically analyze, interpret, and

design DNA, RNA, peptide, and glycan

sequence datasets with minimal machine

learning expertise.
ll

mailto:jimjc@mit.�edu
https://doi.org/10.1016/j.cels.2023.05.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cels.2023.05.007&domain=pdf

OPEN ACCESS

ll
Methods

BioAutoMATED: An end-to-end automated
machine learning tool for explanation
and design of biological sequences
Jacqueline A. Valeri,1,2,3,4,13 Luis R. Soenksen,2,3,5,13 Katherine M. Collins,3,6,7,8,13 Pradeep Ramesh,3 George Cai,3

Rani Powers,3,9 Nicolaas M. Angenent-Mari,1,2,3 Diogo M. Camacho,3 Felix Wong,1,2,4 Timothy K. Lu,1,2,4,6,10

and James J. Collins1,2,3,4,11,12,14,*
1Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
2Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
3Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
4Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
5Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
6Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge,
MA 02139, USA
7Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
8Department of Engineering, University of Cambridge, Trumpington St, Cambridge CB2 1PZ, UK
9Pluto Biosciences, Golden, CO 80402, USA
10Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
11Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA
12Abdul Latif Jameel Clinic for Machine Learning in Health, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
13These authors contributed equally
14Lead contact

*Correspondence: jimjc@mit.edu

https://doi.org/10.1016/j.cels.2023.05.007
SUMMARY
The design choices underlying machine-learning (ML) models present important barriers to entry for many
biologists who aim to incorporate ML in their research. Automated machine-learning (AutoML) algorithms
can address many challenges that come with applying ML to the life sciences. However, these algorithms
are rarely used in systems and synthetic biology studies because they typically do not explicitly handle
biological sequences (e.g., nucleotide, amino acid, or glycan sequences) and cannot be easily compared
with other AutoML algorithms. Here, we present BioAutoMATED, an AutoML platform for biological
sequence analysis that integrates multiple AutoML methods into a unified framework. Users are automat-
ically provided with relevant techniques for analyzing, interpreting, and designing biological sequences.
BioAutoMATED predicts gene regulation, peptide-drug interactions, and glycan annotation, and
designs optimized synthetic biology components, revealing salient sequence characteristics. By auto-
mating sequence modeling, BioAutoMATED allows life scientists to incorporate ML more readily into their
work.
INTRODUCTION

The advent of massive, high-dimensional biological datasets in

recent years has facilitated the widespread application of

machine-learning (ML) methods to investigate and predict bio-

logical phenomena,1,2 delivering exciting breakthroughs in

genomics and promising more in fields such as systems

biology,1 synthetic biology,1,3 and structural biology.4 Medium-

to large-scale biological sequence datasets, including those of

nucleic acid, peptide, and glycan sequences, are ubiquitous.

The use of ML on these datasets could aid investigators in

extracting biological insights and accelerate the design of

sequences with desired properties.
Cell Systems 14, 525–542, J
This is an open access article under the CC BY-N
Computational analyses and ML techniques have become

more accessible to scientists through online tutorials, open-

source code, interactive notebooks, and software packages.5–7

Nevertheless, ML expertise is often required to build, train, and

deploy ML models. Various user-made decisions can dramati-

cally affect the quality and performance of ML models. Under-

standing which design decisions matter and how to make the

most appropriate decisions for any given dataset remain espe-

cially pertinent barriers for life science researchers with limited

ML experience. Even among skilled ML practitioners, the appro-

priate selection of algorithmic techniques and tuning of model

parameters—typically ranging in number from thousands to hun-

dreds of millions—is difficult.8,9 Indeed, manual model definition
une 21, 2023 ª 2023 The Author(s). Published by Elsevier Inc. 525
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:jimjc@mit.edu
https://doi.org/10.1016/j.cels.2023.05.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cels.2023.05.007&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 1. The BioAutoMATED framework automates the identification of predictive ML architectures for any set of nucleic acid, peptide, or

glycan sequences

The integrated pipeline includes standard data processing, a mixed model search via three open-source automated ML (AutoML) libraries, and general

benchmarking of models. Trainedmodels are automatically deployed for interpretation and sequence design. BioAutoMATED also includes features to externally

validate models with additional datasets and re-train models on new data using transfer learning.

ll
OPEN ACCESS Methods
and model parameter optimization require considerable

expertise and time to implement10–12 and may only provide

limited benefit in many applied ML studies in biology and

biomedicine.8,13

A promising avenue toward easing the adoption of ML to

analyze biological datasets is the use of automated machine

learning (AutoML). AutoML encompasses methods that auto-

mate the design and deployment of ML pipelines with minimal

user intervention.10,14 End-to-end AutoMLwould provide life sci-

entists with easy data pre-processing, feature extraction, model

selection and optimization, and performance evaluation.10,14,15

AutoML techniques can automatically identify appropriate

model architectures (the types of algorithms used in the model)

and model hyperparameters (the parameters that can be tuned

in anymodel to affectmodel performance). Because determining

the optimal model architectures and hyperparameter values is

oftentimes difficult, even for ML experts, appropriately imple-

mented AutoML strategies may assist life scientists in building

initial predictive models. Furthermore, AutoML may be useful

for more experienced ML practitioners as a way to quickly

generate baseline models to compare against or rapidly identify

broad classes of models with encouraging performance.

There are currently a rich variety of AutoML tools avail-

able.16–22 Many established AutoML tools search exclusively

among classes of neural network models. However, among the

most exciting AutoML tools in use are tree-based optimization

methods that search among ‘‘shallow’’ or simpler scikit-learn-

based models such as random forest classifiers.23,24 These

techniques, which may be better suited for smaller, sparser bio-

logical datasets than neural networks, have not yet been used
526 Cell Systems 14, 525–542, June 21, 2023
jointly with neural architecture searchmethods to accelerate bio-

logical sequence analysis. Indeed, architecture choice is impor-

tant for model performance12 and recent studies suggest that

there is no single ‘‘best’’ AutoML tool,25 underscoring the impor-

tance of evaluating many classes of models on one platform.

Thus, there is a need for AutoML integration within a scalable

system that can also handle data pre-processing, model deploy-

ment, and system reporting.

Accordingly, here, we present the Biological Automated

MAchine learning Tool for Explanation and Design, or

BioAutoMATED, an end-to-end AutoML framework optimized

for building models with nucleic acid, peptide, and glycan

sequence inputs (Figure 1). The BioAutoMATED system inte-

grates multiple open-source AutoML tools23,26,27 with a diverse

set of searchmechanisms that allow for a wider breadth of archi-

tecture search spaces thanpreviously reported.Weaugment this

integrationwith automatic data importing, pre-processing, archi-

tecture selection, hyperparameter search, model training, model

deployment, and performance reporting, all embedded into an

easy-to-use, high-level programming interface that can be ac-

cessed in a Jupyter Notebook. We show that BioAutoMATED fa-

cilitates biological model interpretation by automatically using

techniques that predict salient regions and motifs within se-

quences. We also include multiple methods, as reported in Bo-

gard et al.28 and Valeri, Collins, Ramesh et al.,29 to enable the

computer-aided design of novel biological sequences.

To demonstrate the utility of our platform, we evaluate

BioAutoMATED by testing and deploying ML models based on

a wide range of datasets relevant to gene regulation, peptide-

drug interactions, and glycan annotation. The inputs, outputs,

ll
OPEN ACCESSMethods
and salient features learned by our model in each case are as

follows:

(1)Gene regulation. We explore the effect of ribosome-binding

site (RBS) sequence inputs on translation efficiency outputs in

Escherichia coli.30 We demonstrate that models are predictive

of translation efficiency and that we can achieve state-of-the-

art performance comparable to that of manually tuned models

in less than 30 minutes of runtime—from only 10 lines of user

input. These results enable rapid and accurate prediction of

RBS sequences for synthetic biology applications.

(2)Peptide-drug interactions.We explore the effect of antibody

sequence inputs on drug-binding affinity outputs, focusing on

antibody sequences varying in their CDR-H3 regions and how

they lead to differential binding to the drug ranibizumab as a

target antigen.31 We show that BioAutoMATED can produce

models that, although not as high performing as a manually

tuned model comprising six different custom architectures,

remain highly predictive. Our models can be readily used to

inform the development of antibody variants that have improved

target specificity based on sequence alone.

(3)Glycan annotation. We explore the effect of glycan

sequence inputs on the outputs of taxonomic group classifica-

tion and immunogenicity in humans. Building on a previously

published database of short glycan sequences,32 we use

BioAutoMATED to identify a best-performing model for the pre-

diction of glycan immunogenicity to humans. We further show

that a model can identify phylogenetic domains based on

sequence information, aiding the annotation of these sequences.

Finally, to demonstrate its additional features, we apply

BioAutoMATED in an end-to-end case study relevant to RNA

toehold switch design29,33 for detecting nucleic acids. In partic-

ular, we show that BioAutoMATED can find sequence regions of

functional relevance for toehold switches, prokaryotic riboregu-

lators that sense the presence of trigger RNAs. Building on pre-

viously generated data, we show that BioAutoMATED produces

MLmodels that predict the performance of toehold switches that

detect RNA from Zika virus.

Taken together, our applications of BioAutoMATED demon-

strate its efficient identification and training of ML models with

minimal user input for biologically relevant sequence datasets,

outperforming other biology-focused AutoML tools and

achieving performances comparable to those of manually

defined architectures. BioAutoMATED thereby offers a versatile

platform for life scientists to easily develop and deploy ML

models built on sequence-based datasets.

RESULTS

BioAutoMATED automates the development of ML
models
BioAutoMATED is a highly customizable end-to-end Python

framework with the capacity to handle diverse sequence-based

datasets, including those of nucleic acids, peptides, and glycans

(Figure 1). The inputs to BioAutoMATED are biological se-

quences and can be DNA, RNA, amino acid, and glycan

sequences of any length, type, or function. Based on these

inputs, BioAutoMATED generates models that can predict func-

tion from sequence information alone. Here, the function may be

any user-defined function including, for example, the transcrip-
tion efficiency of a regulatory gene element, the enrichment of

a peptide sequence in a binding assay, or the pathogenicity of

glycan sequences in a microbiome sample.

To operate our system, the user first uploads a CSV or Excel

spreadsheet to one of our provided Jupyter notebooks with a

list of biological sequence inputs and their corresponding target

value outputs that the user wishes to predict. These target values

may be continuous values, binarized values (pre-processed to

zeros and ones), or text labels (for example, ‘‘bacteria’’ and ‘‘hu-

man’’). Correspondingly, BioAutoMATED can produce multiple

types of models: (1) binary classification models that are as-

sessed on their ability to predict negative ‘‘0’’ and positive ‘‘1’’

classes, (2) multi-class classification models that are assessed

on their ability to predict multiple classes (e.g., ‘‘bacteria,’’ ‘‘hu-

man,’’ and ‘‘virus’’), and (3) regression models that are assessed

on their ability to predict continuous values. Although the user

can provide target values in any range, for simplicity,

BioAutoMATED can automatically normalize the target values

(e.g., to lie between a minimum value of �1 and a maximum

value of +1). For binary classification tasks on sequences with

continuous labels, the platform thresholds between positive

and negative classes to binarize the data, either automatically

or with a user-provided cut-off value. For example, if the user

wishes to predict ‘‘good’’ or ‘‘bad’’ classes of sequences using

a model trained on sequences with target values between �1

and 1, the user can indicate that sequences with values greater

than 0.75 should be treated as positive (‘‘good’’) examples and

vice versa.

The user’s dataset may consist of any number of biological

sequences of a given type (e.g., nucleic acid, amino acid, or

glycan), but we recommend some guidelines. For optimal re-

sults and reasonable timeframes, we recommend datasets be-

tween 1,000 and 500,000 sequences and sequences up to

several hundred ‘‘subunits’’ (nucleotides, amino acids, or

glycan monosaccharides and connecting bonds) in length

(see STAR Methods for more information). After the user up-

loads their selected dataset, BioAutoMATED proceeds rela-

tively hands-free. Upon selection of a small set of user-defined

options such as the sequence type, permitted time to run each

AutoML search, and desired prediction task (regression, binary

classification, or multi-class classification), BioAutoMATED

conducts all subsequent data pre-processing, including clean-

ing of incorrectly formatted inputs. The input sequence alpha-

bet, or set of nucleotides, amino acids, or monosaccharides

and bonds represented in the user’s dataset of sequences, is

automatically inferred. For example, the alphabet for peptide

sequences is composed of all amino acids which appear in

the input data, which allows for the relative importance of input

letters to be learned rather than assuming all amino acids are

represented in the dataset. This alphabet is then used to

generate vector representations for all input sequences (see

STAR Methods).

After automatic data pre-processing, BioAutoMATED per-

forms an AutoML model search by implementing modified

versions of DeepSwarm,27 AutoKeras,26 and Tree-based Pipe-

line Optimization Tool (TPOT)23 to jointly search different archi-

tectures and hyperparameters. We selected these three

AutoML programs because of their broad and distinct architec-

ture search spaces and reported high performance in recent
Cell Systems 14, 525–542, June 21, 2023 527

ll
OPEN ACCESS Methods
benchmark evaluations across multiple datasets.34,35 In brief,

their methodologies are as follow:

(1)AutoKeras26 is an open-source framework to efficiently

search neural network architectures, in which neural network

kernels and tree-structured acquisition functions are used to iter-

atively search for optimal architectures.

(2)DeepSwarm27 performs neural architecture search based

on simulated ant colony behavior (or swarm-based) algorithms,

wherein a population of search agents sense local and

global paths of previous architecture explorations as a way to

collectively search for optimal convolutional neural network

architectures.

(3)The TPOT framework,23 built on top of scikit-learn, covers

non-neural network architectures using genetic programming,

feature engineering, and self-learning algorithms.

BioAutoMATED produces results for all three AutoML systems

that can be jointly evaluated and compared. A key reason for this

is that our integration methodology depends only on standard-

ized inputs and outputs. Consequently, other AutoML systems

could be feasibly incorporated by adapting the current platform.

BioAutoMATED accommodates different data types,
sizes, and processing options
BioAutoMATED automatically offers several options for more

user involvement in model selection, controls, and dataset

expansion. For example, a systems biology researcher may

not be comfortable determining the amount of data needed to

train a typical ML model, as this judgment depends on a variety

of factors, such as the difficulty of the prediction task, quality of

the data, and dimensionality of the sequence space. To evaluate

if the amount of training data were sufficient for optimizing the

model, the user can opt-in to run a data ablation experiment

with models trained on randomly selected datasets of

decreasing sizes (Figure S1). This feature may prove helpful for

future experimental planning; for example, if models achieve

high performance when trained on only 20,000 sequences, it

may not be necessary to conduct the expensive procedures

needed to generate data for a full 40,000 sequences. Addition-

ally, the BioAutoMATED platform automatically calculates the

elapsed time spent on each AutoML stage (architecture search,

dataset ablation studies, scrambled controls, etc.), which can be

evaluated by the user (Figure S2).

For nucleic acid sequences, the user is also offered the option

to augment the dataset by computing complementary se-

quences, reverse complementary sequences, or both, and by

spiking these synthetic sequences into the dataset with the

labels of the original sequence (Figure S3). This augmentation

step is inspired by data augmentation in image classification,

in which the dataset size can be artificially increased by crop-

ping, rotating, or transforming the original images.36 In some

cases, with small training datasets, this opt-in data augmenta-

tion step can boost model performance, especially for se-

quences in which the complement or reverse complement is

expected to confer a similar meaning as the original sequence.

Because all sequences in a training set must have the same

length to be compatible with the three AutoML tools,

BioAutoMATED provides several options to standardize the

length of datasets with heterogeneous sequence lengths. Se-

quences can be padded to the maximum length, truncated to
528 Cell Systems 14, 525–542, June 21, 2023
the minimum length, or standardized to the average sequence

length (Figure S4).

To extend the applicability of BioAutoMATEDmodels, the user

is providedwith a transfer learningmodule in which newdata can

be used to ‘‘fine-tune’’ existing models (see STAR Methods).

Users can re-train any existing DeepSwarm, AutoKeras, or

TPOT model produced by BioAutoMATED with additional

datasets, further enabling model predictive capability even as

datasets grow in size and quality.

BioAutoMATED provides interpretation tools to
facilitate sequence analysis and model explanation
Before demonstrating the use of BioAutoMATED to create pre-

dictive models, we note here some additional features that are

relevant to different applications. A key feature is interpretability:

for many researchers, creating a predictive model is often just a

step toward knowledge generation and not the end goal.37 Espe-

cially in AutoML, where models can be developed in a ‘‘black-

box’’ fashion, it is useful to enable model transparency and

leverage trained models to understand the underlying biology.

To this end, BioAutoMATED provides interpretability tools to

automatically analyze the best models from each of the three im-

plemented AutoML programs and interrogate model behavior.

These tools can assist users in identifying regions of importance

in their sequences, as well as motifs that may be functionally

relevant. These tools consist of the following:

(1)Feature important plots and in silico mutagenesis. These

tools can reveal the relative importance of each position in a

sequence but do not provide any information about identities

of the subunits (e.g., nucleotides) lending to that importance.

To illustrate the utility of such tools, we have used a feature

importance plot to assess TPOT models in which each position

in an average sequence is ascribed an importance by the model.

To assess BioAutoMATED models more broadly, we also devel-

oped a simple mutagenesis technique to evaluate each

position’s effect on the sequence’s prediction score in a

model-agnostic way. The mutagenesis protocol automatically

changes each subunit of a sequence to all other possible options

(‘‘subunit changes’’). BioAutoMATED generates plots of the

standard deviation of predicted scores of sequences with sub-

unit changes. Doing so reveals ‘‘hotspots,’’ or regions of

elevated functional importance, by querying variable inputs

instead of directly investigating the model. This in silico

sequencemutagenesis strategy providesmodel-agnostic expla-

nations for all model types, as not every type of AutoMLmodel is

amenable to more complex gradient-based interpretation

methods (for example, the scikit-learn-based models found by

TPOT cannot be directly interrogated by interpretability tech-

niques designed for neural networks as described below).

(2)Visualization of model attention. Tools inspired by computer

vision, such as saliency maps and class activation maps, can be

used on some neural network models to reveal positions of

importance and specific subunits that the model preferentially

focuses ‘‘attention’’ on. We convert these maps to sequence

logos, wherein a higher attention value increases the size of

the letter in the sequence, yielding a visually interpretable view

of attention. BioAutoMATED offers both class activation maps

and saliency maps to visualize model attention with respect

to the input sequences (see STAR Methods for details and a

A B C

D

E H I

F
J

G K

Figure 2. BioAutoMATED generates models that predict translation efficiency from ribosome binding site sequences

(A and B) BioAutoMATED produces models that achieve high Matthews Correlation Coefficients (MCCs) on classifying sequences as ‘‘good’’ or ‘‘bad’’ RBS

sequences, better classifying the original sequences (blue) as compared with models trained on scrambled controls (gray).

(legend continued on next page)

ll
OPEN ACCESSMethods

Cell Systems 14, 525–542, June 21, 2023 529

ll
OPEN ACCESS Methods
comparison of the techniques). To facilitate meaningful compar-

ison of these tools, we also generate sequence logos of the raw

data. For any input dataset, BioAutoMATED constructs

sequence logos for a random set of sequences, top-performing

sequences, poorly performing sequences, and/or sequences

with different labels (Figure S5).

Together, these interpretability techniques offer several

different views of any input sequence which the user can

leverage to inform experimental follow-ups, for example, deep

sequencing all mutants in a targeted region of the sequence or

researching potential binding motifs that emerge from this

analysis.

BioAutoMATED enables computer-aided design of
biological sequences
Another key feature that BioAutoMATED provides is de novo

design. These functionalities build on growing interest in using

ML for sequence design, and recent approaches have expanded

the boundaries of nucleic acid38,39 and peptide sequence

design.40,41 Specifically, after training any BioAutoMATED

model, the user can design de novo sequences by specifying a

target value (e.g., 75th percentile of all sequences) that the de

novo designed sequences should obtain. BioAutoMATED en-

ables two methods for this task: random mutagenesis and

directed design.

Random mutagenesis allows users to assess random, sub-

unit-based mutations of sequences as specified previously.

This simplistic method may be sufficient for cases in which

optimal sequences are only a few mutations away from existing

sequences, or with datasets of relatively short sequences whose

search spaces can be thoroughly explored via this ‘‘brute force’’

method. This technique is compatible with all models generated

by BioAutoMATED, including simple models generated

by TPOT.

In many cases, more sophisticated techniques can generate

more diverse or higher-performing sequences. We therefore im-

plemented a directed design method, gradient ascent, by ex-

tending the SeqProp framework described in Bogard et al.28

and adapted in Valeri, Collins, Ramesh et al.29 as STORM.

Here, any user-specified constraint involving specific sequence

subunits, specific positions, and/or base-pairing constraints

can be specified. The entire sequence is allowed to vary its

composition simultaneously, which occurs in a directed manner
(C and D) BioAutoMATED produces regression models that can predict contin

AutoKeras regression model has an R2 value of 0.854. Significantly more predictiv

assessed with R2 values, Pearson R coefficients, Spearman R coefficients, and

cross-validation folds (see STAR Methods for details) and asterisk denotes p < 0

(E) RBS sequences were evaluated via a saliency map computed for N = 100 ran

Normalized saliency represents arbitrary model attention units.

(F) The saliency map and (F) its corresponding sequence logo display Shine-Dal

(G) This Shine-Dalgarno-like motif can also be visualized in the sequence logo fo

(H) In silico sequence mutagenesis methods facilitate BioAutoMATED model

consensus between DeepSwarm (top), AutoKeras (middle), and TPOT (bottom) m

Error bars represent the 95% confidence intervals for N = 50 samples of each cl

(I) The feature importances of the TPOT regression model show elevated importa

(J) From a selection of N = 100 random RBS sequences, directed STORM optimiz

scores as predicted with the best DeepSwarm binary classification model.

(K) STORM-designed RBS sequences optimized from random sequences can

cleotides.

530 Cell Systems 14, 525–542, June 21, 2023
using gradient ascent, resulting in simultaneous mutations of all

allowed positions using the learned model weights to optimize

the target value. This tool therefore allows BioAutoMATED to

explore complex sequence spaces more fully than random

mutagenesis alone, and it is agnostic to themodel and sequence

alphabet (see STAR Methods for more information).

BioAutoMATED elucidates ribosomal binding site
design for gene regulation
We present a series of case studies using our integrated AutoML

framework to answer key biological questions on previously

published experimental datasets. We first explored the relation-

ship between gene regulatory element sequence and

effect, specifically the effect of RBS sequence on translation

efficiency in E. coli.30 Höllerer et al. employed a DNA-

based phenotypic recording technique using a site-specific re-

combinase to investigate the translation kinetics of �276,000

different 17-nucleotide long RBS sequences.30 We applied

BioAutoMATED to this dataset to predict translation efficiency

from sequence alone.

BioAutoMATED readily generated binary classification models

with Matthews Correlation Coefficients (MCCs)�0.8 for all three

search algorithms (Figure 2A). The most predictive model was

identified and trained by the DeepSwarm algorithm, with an

auROC of 0.971 and MCC of 0.825 (Figure 2B). In an analogous

regression task, BioAutoMATED identifies a model architecture

for the RBS dataset with the AutoKeras search method with an

average Pearson R of 0.924 and an average R2 of 0.854

(Figures 2C and 2D), in line with the manually defined and tuned

models reported by Höllerer et al.30; these models achieved an

R2 between 0.8 and 0.95 using residual network (ResNet42)

architectures.

We tested this regression model on the same test set of RBS

sequences as Höllerer et al.30 and achieved similar performance

with an auROC of 0.939, Pearson R of 0.931, and R2 of 0.867—

compared with an R2 of 0.927 from Höllerer et al. (Table S1).

Although BioAutoMATED performs slightly worse than the best

reported model, the top-performing DeepSwarm regression

model was found in just 26.5 minutes (Figures S2A and S2E)

and required ten lines of user input (in contrast to over 750 lines

of code for Höllerer et al.’s model). Additionally, Höllerer et al.’s

model required the manual selection of architectures and hyper-

parameters for optimization using a random grid search, a
uous values of translation efficiency from the same RBS dataset. The best

e models for original sequences than scrambled sequences were obtained, as

mean absolute error (MAE). For (A) and (D), points correspond to one of N = 3

.005, two-sided t test.

domly selected sequences using the DeepSwarm binary classification model.

garno-like motifs described in Höllerer et al.30

r the top 10% of RBS sequences (N = 50 sequences).

explanation for all sequence types in a model-agnostic way, here showing

odels. RBS models show elevated importance of positions 5–8 for all models.

ass.

nce for positions 5–8.

ation produces de novo designed sequences with higher translation efficiency

be visualized with sequence logos, showing a predominance of A and G nu-

ll
OPEN ACCESSMethods
process requiring some ML expertise. BioAutoMATED is not

limited by these requirements.

To better understand the model predictions and the effects of

sequence motifs on translation efficiency, we performed a con-

trol experiment wherein the input sequences were scrambled.

BioAutoMATED enables this experiment to be performed auto-

matically and generates scrambled sequences by shuffling the

order of nucleotides. The resulting dataset has the same number

of sequences and can be used to train a model that predicts

translation efficiency given only nucleotide frequency. When

evaluating the RBS models with this scrambled control, we

found that these models exhibit significantly worse performance

on nucleotide composition alone for RBS sequences (Figures 2A

and 2D). These results quantitatively confirm the importance of

RBS sequence order to translation efficiency and are consistent

with models of translation initiation.30

Building on our finding that RBS sequence order affects

translation efficiency in E. coli, we asked whether any

motifs or regions within the RBS are particularly important.

BioAutoMATED allows us to address this question using its inter-

pretability tools. We calculated RBS sequence logos from the

saliency map (Figures 2E and 2F) and found that the logos

contain AGATGG and TGGAAG motifs, which resemble the

Shine-Dalgarno-like motifs (‘‘AGGAGG and subsequences

thereof’’) reported in Höllerer et al.30 This motif can also be

cross-referenced with the sequence logo of the best-performing

raw experimental sequences (Figures 2G and S5A), which

includes an ‘‘AGAGGG’’ sequence and a preponderance of A

and G nucleotides. Although the saliency map motifs are only

marginally enriched compared with background, this motif ap-

pears in the middle of the sequences, around positions 5–8:

these are positions that we found to have the highest predicted

change to model score (Figure 2H) and the highest feature

importance (Figure 2I). These findings illustrate the range of re-

sults that can be automatically produced by BioAutoMATED to

facilitate interpretation.

To apply BioAutoMATED to RBS design, we applied its

random mutagenesis and the STORM directed design tools to

a starting subset of sequences, a random set of sequences (Fig-

ure 2J). We found that the directed design method designs RBS

sequences with high predicted translation efficiency, whereas

the naive random mutagenesis method resulted in a wide range

of predicted translation efficiency. The STORM-optimized se-

quences, visualized with sequence logos (Figure 2K), can help

BioAutoMATED users identify motifs or sequences that can be

experimentally tested to validate high translation efficiency. For

example, the predominance of A and G nucleotides resembles

the sequence logos described above and the most-improved

sequence ‘‘GATGGCGAGGAGTTTCT,’’ which improves from a

predicted score of 0 to a predicted score of 1, contains both

GAGGAG and AGGAGT motifs. Together, our results show

that BioAutoMATED can productively generate predictive

models, elucidate biologically important sequence motifs, and

facilitate de novo RBS design for studies of gene regulation.

BioAutoMATED enables optimization of drug-binding
antibody sequences
We next investigated precision targeting of human IgG anti-

bodies, asking how antibody sequences varying in their CDR-
H3 regions have different binding affinities to the drug ranibizu-

mab.31 We applied the BioAutoMATED platform to a peptide

sequence dataset (N = 67,769 sequences) with target values

corresponding to the enrichment of peptide binding against rani-

bizumab, as collected and analyzed by Liu et al.31 Here, phage

display was used to assay a library of tens of thousands of

antibody fragment sequences for their binding affinities to

multiple drugs, with the goal of predicting antibody affinity

from sequence and using these trained models to design de

novo antibodies.31

As with the RBS dataset, BioAutoMATED identified accurate

model architectures that are significantly more predictive than

models trained on scrambled peptide sequences (Figure 3A).

Our best model achieved high predictive capability, with an

auROC of 0.880 and an MCC of 0.748, indicating that antibody

affinity can be accurately predicted from sequence. Addition-

ally, we evaluated the BioAutoMATED framework on the

same held-out test set as Liu et al.31 The best convolutional

neural network from Liu et al. achieved an auROC of 0.960

and Pearson R of 0.79, whereas our best regression model

achieved an auROC of 0.868, Spearman R of 0.678, and Pear-

son R of 0.659 (Figure 3B; Table S1). Although Liu et al.’s model

performs better than our best regression model, it is important

to note that Liu et al.’s model was manually designed and

comprised six different custom convolutional architectures,

each with different network-layer widths and filters.31 These

types of adjustments and parameter selection processes

require ML expertise, which BioAutoMATED abstracts away

from the user. Here, the encouraging performance of

BioAutoMATED models still allows us to generate predictive

models and address related questions of interpretability and

design.

To study interpretability, we asked whether any amino acids

were particularly important to the predicted antibody affinity for

binding to ranibizumab. Generating the feature importance (Fig-

ure 3C) and in silico mutagenesis plots (Figure 3D), we found

that the first two and last two positions in the sequence were

clearly predicted to be of minimal importance to binding affinity.

This suggestion is further supported by the saliency map

(Figures 3E and 3F). A closer examination of the saliency map

sequence logos (Figure 3F), as well as the top-performing

peptide sequences visualized by sequence logos (Figure S5B),

reveals an FDY motif in positions 15–17. This motif was also

described in figure 6 of Liu et al.,31 in which it was found to corre-

spond to the top-performing sequences. The saliency map also

reveals amino acids of decreased importance, such as methio-

nine, cysteine, and asparagine, which have barely any saliency

values ascribed to them across the sequence. These observa-

tions were again supported by Liu et al.,31 who used their trained

ML models to optimize sequences and found that neither

cysteine nor asparagine appeared in any of their ML-optimized

sequences.

We next used STORM to design de novo peptide sequences

with high predicted enrichment of ranibizumab binding (Fig-

ure 3G). Consistent with our prior results, we found that

STORM-optimized peptide sequences display the aforemen-

tioned FDY motif (Figure 3H), as well as a preference for alanine

in the beginning and end of the sequence. Our best designed

sequence, ‘‘AEGHSLYGQDTTWPHFDYAA,’’ has a predicted
Cell Systems 14, 525–542, June 21, 2023 531

Figure 3. BioAutoMATED generates models that predict ranibizumab-binding affinity from peptide sequences

(A) Peptide sequences were tested in the BioAutoMATED pipeline, achieving higher MCCs on the original sequences (blue) compared with models trained on

scrambled controls (gray).

(B) Peptide sequence regression is significantly more predictive for original sequences (blue) than scrambled sequences (gray) for all models, as assessedwith R2

values, Pearson R coefficients, Spearman R coefficients, andmean absolute error (MAE). Shown is the TPOT regressionmodel. For (A) and (B), points correspond

to one of N = 3 cross-validation folds and asterisk denotes p < 0.005, two-sided t test.

(C and D) (C) The binary classification models trained on peptide sequences evaluated with TPOT feature importance or (D) in silico mutagenesis displays low

importance for ranibizumab-binding enrichment for the positions at either end of the sequences (N = 50 sequences). Error bars representing standard deviation of

the computed feature importance are shown if the analyzed model is a collection of multiple ‘‘estimators’’ in scikit-learn, such as a random forest.

(E and F) (E) Peptides were evaluated via a saliency map and (F) its corresponding sequence logo on the DeepSwarm binary classification model, demonstrating

the FDYmotif in positions 15–17 similar to that seen in Liu et al.31 for N = 100 sequences. Normalized saliency represents arbitrary model attention units. Note that

saliency map sequence logos are plotted with respect to weights, whereas activation map sequence logos are plotted with respect to probability; this is an

arbitrary design choice (see STAR Methods).

(G) Peptide sequences can be improved for ranibizumab-binding enrichment with directed optimization based on the DeepSwarm binary classification model

(N = 100 starting sequences).

(H) Peptide sequences that have been designed with STORM display the same FDY motif as described earlier.

ll
OPEN ACCESS Methods
model score of 1.080, does not contain any methionine,

cysteine, or asparagine, and does not appear in the original data-

set. This sequence and other generated peptide sequences can

be readily assembled, and phage display experiments could

again be used to validate the model predictions of high binding

affinity to ranibizumab.
532 Cell Systems 14, 525–542, June 21, 2023
BioAutoMATED accurately classifies glycans according
to function
To demonstrate how BioAutoMATED can be applied to more

complex search spaces, we used BioAutoMATED to accurately

classify glycans, large carbohydrate biopolymers made up

of monosaccharides in unique arrangements with extensive

ll
OPEN ACCESSMethods
branching that play a crucial role in host-pathogen interactions,

cell-cell communication, cell adhesion, autoimmunity, and can-

cer.32,43 Recent successes in the use of ML for glycobiology32,44

have fueled interest in applying computational analyses to

growing databases of glycan sequences. Here, we build on

work by Bojar et al.,32 who provide a curated database of

glycans called ‘‘SugarBase,’’ and use this dataset to explore

the effects of glycan sequence composition on both taxonomic

group classification, as well as on immunogenicity to humans.

These glycan sequences are composed of both monosaccha-

rides (e.g., galactose) and bonds (e.g., the a-1,3 bond), as de-

noted with the standard symbol nomenclature for glycans.

First, we used BioAutoMATED for multi-class classification of

phylogenetic domains. Classification of taxonomic group based

on sequence alone is an open problem relevant to microbiome

sample analysis because many datasets lack appropriate phylo-

genetic annotation. BioAutoMATEDmodels performed well (Fig-

ure 4A), with the best-performing TPOT models achieving MCCs

of 0.594, 0.895, 0.875, and 0.351 for the archaea (N = 34 se-

quences), bacteria (N = 5,856 sequences), eukarya (N = 6,635

sequences), and virus (N = 149 sequences) domains, respec-

tively. These results are comparable to the domain MCC values

reported in Bojar et al.32 (�0.869) and are significantly higher

than corresponding values for scrambled controls, which we

found to be 0.0, 0.623, 0.605, and �0.002, respectively.

Second, we used BioAutoMATED to perform binary classifica-

tion on a set of labeled immunogenic or non-immunogenic

glycan sequences (N = 1,320 sequences) from Bojar et al.32

We found that BioAutoMATED models trained on these se-

quences are highly predictive, with the top TPOT model

achieving an auROCof 0.936, anMCC of 0.873, and an accuracy

of 92.7% (Figure 4B). These models are comparable to the top-

performing language model in Bojar et al., which achieved an

accuracy of 92%. The auto-generated scrambled control evalu-

ated with the TPOT model achieved an auROC of 0.763 and

MCC of 0.526, a statistically significant decrease from the non-

scrambledmodel andmore predictive than the languagemodels

from Bojar et al.32 trained on scrambled glycan sequences

(which achieved an accuracy of 51%). Bojar et al.32 reported

that their control models that did not treat glycan sequences

as a language—analogous to BioAutoMATED—achieved

accuracies ranging from 80% to 88%, due to the functional

importance of order and patterns in glycans. It is possible that

preserving glycans as sequences rather than passing them into

language models improves learning from monosaccharide and

bond composition alone.

Lastly, we used BioAutoMATED’s interpretation and design

tools to explore and leverage the monosaccharides that dispro-

portionately affect glycan immunogenicity. Generating class

activation sequence logos for the effects of sequences on immu-

nogenicity, we found that mannose and rhamnosemonosaccha-

rides exhibit some importance to immunogenicity predictions

(Figure 4C). The implications of these two monosaccharides

are further supported with raw sequence logos (Figure S5C), in

which we found that immunogenic sequences are rhamnose-

rich and non-immunogenic sequences are mannose-rich (similar

to the clusters shown in Figure 2E of Bojar et al.32). Furthermore,

immunogenic importance is associated with fucose (Figures 4C

and S5C), one of the reported immunogenic monosaccharides
from Mohapatra et al.44 that arose from a graph neural

network-based substructure analysis. In both the activation

map sequence logos (Figure 4C) and the raw data sequence

logos (Figure S5C), Gal (and the a-1-3 bond, though this bond

is not specific) was predicted to be important, consistent with

previous findings that a-1,3-Gal (galactose-a-1,3-galactose)

can be immunogenic to humans.46

Using STORM as a proof of principle, we found that glycan

sequences can be designed to be optimally immunogenic (Fig-

ure 4D). Consistent with Figures 4C and S5C, the de novo de-

signed immunogenic glycan sequences demonstrated some de-

gree of rhamnose enrichment (Figure 4E). The de novo

immunogenic glycan sequences were also marked by the pres-

ence of colitose monosaccharides (Figure 4E), a monosaccha-

ride which was not present in the raw sequence logos and oc-

curs in the LPS of some Gram-negative bacteria.45 As with its

predictions for RBS and antibody sequences, these

BioAutoMATED-generated predictions for glycans could be

empirically tested, and doing so could expand our understand-

ing of glycan biology.

BioAutoMATED facilitates the design of toehold
switches that detect nucleic acids
Finally, we used BioAutoMATED to optimize toehold switches to

have high sensitivity and specificity for specific nucleic acids.We

explore this question as a case study to assess how ML in gen-

eral, and BioAutoMATED in particular, can assist an experi-

mental effort in designing toehold switches for detecting the

presence of a new virus. Toehold switches are riboregulators

that produce a diagnostic output in response to exposure to a

pre-defined ‘‘trigger’’ sequence, which is often a viral or syn-

thetic circuit component. Here, we used a riboregulator dataset

previously generated and analyzed by Angenent-Mari, Garruss,

Soenksen et al.33 and Valeri, Collins, Ramesh et al.29 This ribor-

egulator dataset, one of the largest of its kind, measured the

sensitivity of 91,534 toehold switches (as measured by GFP pro-

duction) in the presence of a 30-nucleotide trigger sequence us-

ing high-throughput flow-seq.

Predicting toehold switch activity from sequence alone is

important, because secondary structure inputs have been the

most commonly used determinant of riboregulator function-

ality.47 Using BioAutoMATED, we found that a convolutional

neural network was best at predicting the responsiveness of

toehold switches based on sequence information alone (Fig-

ure 5A). The binary classification model performance of auROC

of 0.925 outperforms that of manually tuned convolutional neural

networks and language models reported in Valeri, Collins, Ra-

mesh et al.,29 both with auROC �0.85. The highest performing

regression model identified by BioAutoMATED has an R2 of

0.680 (Figure 5A), again comparable to results reported in Valeri,

Collins, Ramesh et al.29 Additional automated analyses indi-

cated that our dataset was likely appropriate for the models at

hand and that more training data would result in minimal perfor-

mance improvements (Figure 5B).

To investigate what the best BioAutoMATED model learned

about toehold switch biology, we applied the model to scram-

bled sequences, which indicated that the model uses more

than just the nucleotide composition in making its predictions

(Figure 5C). We then generated sequence logos of the raw
Cell Systems 14, 525–542, June 21, 2023 533

Figure 4. BioAutoMATED performs accurate binary and multi-class classification of glycan sequences

(A) Glycans were classified into archaea (N = 34), bacteria (N = 5,856), eukarya (N = 6,635), and virus (N = 149) domains, i.e., Classes 0, 1, 2, and 3, respectively.

Multi-class models are significantly more predictive on original sequences compared with scrambled sequences for the largest two classes, Class 1 and Class 2.

(B) Immunogenic glycan sequences were tested in the BioAutoMATED pipeline, achieving higher MCCs on the original sequences (blue) compared with models

trained on scrambled controls (gray). For (A) and (B), points correspond to one of N = 3 cross-validation folds and asterisk denotes p < 0.005, two-sided t test.

(C) DeepSwarmmodels predicting the immunogenicity of glycanswere evaluated with a sequence logo based on the class activationmap for N = 100 sequences,

with mannose (g characters) and rhamnose (i characters) showing some degree of importance to immunogenicity predictions. These results are consistent with

sequence logos on the raw experimental data (Figure S5C), as well as with the rhamnose- and mannose-rich immunogenicity clusters reported in Bojar et al.32

(D) Glycan sequences can be designed via STORM with the top-performing DeepSwarm immunogenicity classifier, creating sequences that are designed to be

as immunogenic (class 1) as possible in a proof-of-principle experiment (N = 100 starting sequences).

(E) These STORM-designed immunogenic glycan sequences display rhamnose enrichment, consistent with Figure S5C, and colitose enrichment, consistent with

its characterization as a rare monosaccharide found in the LPS O-antigen of Gram-negative bacteria.45

ll
OPEN ACCESS Methods
data (Figure 5D) to confirm that known conserved regions—the

RBS in positions 30–40 and the start codon in 47–49—were con-

stant throughout all sequences. Furthermore, we found that the

regions directly adjacent to each toehold’s RBS varied the most

between sequences with top 10%performance, sequences with

bottom 10% performance, and a random subset of sequences.

Additionally, the sequence logo of the top 10% of sequences
534 Cell Systems 14, 525–542, June 21, 2023
accurately highlights an NUA motif (here TTA) in positions 21–

23. This motif was previously described in Valeri, Collins,

Ramesh et al.,29 and is known to be a characteristic motif that in-

fluences toehold switch performance likely by regulating the

binding within the hairpin. Feature importance plots again indi-

cated that the models correctly identify the conserved regions

in positions 30–40 and 47–49 (Figure 5E) and additionally

A B

C D

E F

G H

I

Figure 5. BioAutoMATED can be used to address key biological questions about RNA toehold switches in an automated, end-to-end analysis

(A) To support a biologist exploring the use of ML on their dataset, BioAutoMATED automates the model search process and identifies a keras-based con-

volutional neural network model generated by AutoKeras as the most predictive. The built-in negative control of scrambled toehold sequences (gray) indicates

that regression models trained on toehold switch sequences outperform models trained on scrambled toehold switch sequences.

(B) The BioAutoMATED pipeline tests the robustness of theML pipelines to decreased dataset sizes, showing that DeepSwarm is saturated on the toehold switch

dataset, whereas other methods converge to the highest performance value at the full provided dataset size. At the lowest dataset sizes, DeepSwarm achieves a

significantly higher MCC value than both TPOT and AutoKeras (p < 0.005), whereas at the full dataset size, all models perform significantly better than their

respective scrambled control models (p < 0.005). For (A) and (B), points correspond to one of N = 3 folds and asterisks indicate significance p < 0.005 with two-

sided t test.

(legend continued on next page)

ll
OPEN ACCESSMethods

Cell Systems 14, 525–542, June 21, 2023 535

ll
OPEN ACCESS Methods
showed a steady increase in model attention between positions

20–30. In the saliency map sequence logos (Figure 5F), thymines

appear somewhat enriched in the region of increased attention

between positions 20–30, and we, indeed, found thymines to

appear disproportionately in the best toehold switches’

sequence logos (Figure 5D). These observations suggest that,

in the hairpin (positions 20–30), weak A-T binding enhances

toehold switch performance and might alter the dynamics of

hairpin unwinding in the presence of the trigger sequence.

Together, these results show that BioAutoMATED helps to iden-

tify regions, motifs, and individual nucleotides important for

toehold switch performance.

To address our original goal of design, we used

BioAutoMATED’s design modules to build de novo designed

toehold switches that maintain the hairpin binding constraint

as well as the constant RBS and start codon sequences. When

comparing both the mutagenesis approach and STORM, we

found that STORM-designed toehold switch sequences have

the highest predicted performance (Figure 5G). The STORM-de-

signed sequences show more A-T binding in the regions of 20–

30 and the corresponding descending hairpin binding region

41–46 in the designed sequences (bottom logo) than in the orig-

inal poorly performing sequences (top logo). The STORM-de-

signed sequences also incorporate greater variability in the first

10 nucleotides than the starting sequences (Figure 5G), a region

which has minimal model importance (Figures 5E and 5F). The

most-improved sequence starts from ‘AAATCTTTGATGCTAG

CAGTAGAACTGACCAACAGAGGAGAGGTCAGATGTACTGCT

AG’ which has a predicted score of -0.788; after design, this

sequence becomes ‘TAAAGAAGGTCAAATATAAATATCATAAA

AAACAGAGGAGATTTTATATGATTTATATT’ with a predicted

score of 0.892, which does not exist in the original dataset. We

further note that STORM preserves the user-specified con-

straints of exact sequences and base pairing: this is evident in

the sequence logos, which show ACAGAGGAGA in positions

30–40 and the start codon in positions 47–49. Thus, as shown

by these generated toehold switches, BioAutoMATED is able

to produce toehold switch candidates de novo for subsequent

experimental testing with minimal coding from the user.
(C) Sample outputs demonstrate high performance for predicting continuous va

match between predicted and actual values. The predicted values for the scram

values.

(D) Automatically generated raw sequence logos from experimental data (N = 50

formance are the nucleotides in positions 26–30, with strong binding (G-C bond

region. The first 10 nucleotides have very few differences across the three categ

(E) In silico mutagenesis analysis on the AutoKeras model (left) and TPOT mod

positions 30–40 and 47–49 are appropriately ignored by the toehold switchmodel.

(F) A saliency map and its corresponding sequence logo display low attention to

Normalized saliency represents arbitrary model attention units.

(G) STORM-designed toehold sequences (bottom logo) demonstrate high predic

which were a random selection (N = 100) of the bottom 10% of sequences. As

sequences designed with STORM show the enforcement of constraints around th

well as hairpin binding enforced in these random sequences. Redesigned sequen

(H) The BioAutoMATED model is predictive on datasets from Green et al.47 (N =

different experimental contexts (e.g., the Zika virus toeholds had a LacZ readout

formance metrics can be found in Table S2.

(I) To improve generalizability of the models and exploit newly available data, the

new datasets. Shown is the average of 25 trials using the Green et al.47 dataset spl

metric for Pardee et al.’s dataset. Although the performance increase is marginal,

and predictiveness.

536 Cell Systems 14, 525–542, June 21, 2023
In light of the challenge of translating between different exper-

imental contexts, it is important to ask whether the models

trained on the aforementioned dataset are generalizable. To

address this, we used the trained models to predict the perfor-

mance of toehold switches that were assayed in a different

experimental context. We considered a set of 168 toehold switch

sequences reported in Green et al.,47 which were studied in a

system without the trigger fused to the toehold switch. For this

test set, BioAutoMATED’s best-performing model achieved a

Spearman R of 0.337 between the predicted and actual perfor-

mance, comparable to a corresponding value of 0.36 reported

in Valeri, Collins, Ramesh et al.29 (Figure 5H; Table S2). In a

different dataset of 24 Zika virus-detecting toehold switches re-

ported in Pardee et al.48 that were assayed using an additional

amplification step, LacZ readout instead of fluorescence output,

and different selection criteria, BioAutoMATED’s best-perform-

ing model achieved a Spearman R of 0.307 and Pearson R of

0.311 between the predicted and actual performance (Figure 5H;

Table S2). To explore whether experiment-specific training data

could improve performance, we used BioAutoMATED’s transfer

learning capability (see STAR Methods) to re-train the models

using the Green et al.47 data and found a marginally higher Pear-

son R of 0.319 on Pardee et al.’s test set (Figure 5I). It is important

to note that here the training and test sets are limited (N = 168 for

re-training and N = 24 for testing). Nevertheless, these findings

suggest that measuring toehold switch performance in one

experimental context might have moderate generalizability for

predicting toehold switch performance in other experimental

contexts.

BioAutoMATED outperforms other AutoML tools
Given the broad applicability of BioAutoMATED, we further

aimed to benchmark it against other published AutoML tools us-

ing the same datasets (Table 1, Table S3). Several solutions

tailored to biological data, such as iLearnPlus,49 BioAutoML,50

and JADBio,51 address a wide variety of predictive tasks with

minimal user intervention. These tools perform automated

machine learning in diverse ways and require variable amounts

of pre-processing for biological sequences.
lues (regression) of toehold sequence performance (left), with high degree of

bled sequences (right) trend significantly worse with the actual experimental

sequences each) show that key differentiating factors between toehold per-

s) correlating with worse performance than weak binding (A-T bonds) in that

ories of sequences.

el (right) trained on toehold switches validates that the conserved regions in

N = 50 sequenceswere tested for eachmodel and each performance category.

the conserved regions positions in 30–40 and 47–49 for N = 100 sequences.

ted responsiveness scores compared with the starting sequences (top logo),

terisks indicate significance p < 0.005 with two-sided t test. Toehold switch

e ribosome-binding site (positions 30–40) and start codon (positions 47–49), as

ces have more A-T binding in the hairpin than the original starting sequences.

168) and Pardee et al.48 (N = 24) despite those datasets being generated in

, additional amplification step, and different selection criteria). Additional per-

transfer learning module of BioAutoMATED can be used to re-train models on

it into 90% training and 10% testing, with Pearson R shown as the performance

it is likely that more re-training data could improve both model generalizability

Table 1. BioAutoMATED incorporates more features and options than other available biologically focused AutoML tools

Top model

(or tied for top)

in benchmarks

Takes in raw

sequences as

input

Performs

regression

Interpretation

functionality

Designs de novo

sequences

JADBio 20% (36%) no yes computes feature importances;

paywall for dimensionality reduction

no

BioAutoML 4% (8%) yes no computes feature importances no

iLearnPlus 0% (8%) requires hands-on

pre-processing

no computes feature importances,

clustering, & dimensionality reduction

no

BioAutoMATED 56% (76%) yes yes computes feature importances,

attention maps, & in silico mutagenesis

yes

We evaluated performance ofmodels from four tools (JADBio, BioAutoML, iLearnPlus, and our tool, BioAutoMATED) across 25 tasks, consisting of five

performance measurements for five datasets each. The five datasets assessed comprise the nucleic acid and peptide datasets benchmarked here—

RBS, peptide, toehold, 1,000 synthetic nucleic acids, and 100,000 synthetic nucleic acids—and the five performance evaluations consisted of binary

classification auROC, binary classification MCC, regression R2, regression MAE, and regression correlation coefficient. Overall, BioAutoMATED pro-

duced the best model or tied for the best model in 76% of these tasks. We note here that regression performance could not be compared across tools,

as iLearnPlus and BioAutoML do not accommodate regression tasks. See Table S3 for comprehensive performance metrics across all four tools.

ll
OPEN ACCESSMethods
In brief, BioAutoML50 assesses many diverse representations

of DNA, RNA, and peptides. The optimal representation is used

to vectorize sequences, or convert into a list of numbers, before

optimizing models trained on input data. Similarly, iLearnPlus49

provides both a website and a downloadable user interface in

which the user can upload their dataset, select a method to vec-

torize DNA, RNA, or peptides, and choose a model type that is

then trained and automatically evaluated. JADBio51 is a website

that allows for data analysis and model training, only accepts

vector representations, and cannot handle raw biological

sequences.

To aid in objectively benchmarking these different AutoML

tools, we generated a synthetic control dataset (Figure S6).

This dataset consists of randomly generated 20-nucleotide se-

quences (N = 100,000) that have target values according to a

simple sumof their nucleotides, with an arbitrary scoring scheme

as follows: add 1 for A, 2 for T, 3 for C, and 4 for G. These

sequences have the same target value no matter the order of

their nucleotides; therefore, models trained on original and

scrambled sequences should perform equivalently, and, indeed,

models trained on this synthetic control perform equally as well

as models trained on the scrambled control (Figure S6A).

BioAutoMATED models achieve perfect classification accu-

racies for binary classification, multi-class classification (Fig-

ure S6B), and regression (Figure S6C), providing a positive con-

trol for the BioAutoMATED platform.

The synthetic control benchmarks BioAutoMATED’s interpre-

tation functionality. As a negative control, an activation map on

the synthetic nucleic acid control identifies no motifs but does

ascribe the most importance to adenine nucleotides

(Figures S6D and S6E), the nucleotide that adds the lowest score

of 1 to the arbitrarily scored nucleotide sum target value. No bio-

logical meaning is artificially uncovered in this negative control

attention map.

After suitable dataset pre-processing, we applied iLearn-

Plus,49 BioAutoML,50 and JADBio51 to five benchmark datasets:

RBS,30 peptide,31 and toehold switch sequences,29 as well as a

small set of synthetic nucleic acids (N = 1,000 sequences) and a

larger set of synthetic nucleic acids (N = 100,000 sequences).We

assessed each of the five datasets across two binary classifica-
tion metrics (auROC andMCC) and three regression metrics (R2,

mean absolute error, and correlation coefficient), for a total of 25

‘‘tasks.’’ For 76% of these tasks, BioAutoMATED produces the

best-performing model or ties for the best-performing model,

representing a clear advantage over the other tools. The best

BioAutoMATED model was distributed across AutoKeras,

DeepSwarm, and TPOT model types, indicating that the strong

performance of BioAutoMATED comes from integrating multiple

architecture search methods and there is not one single ‘‘best’’

AutoML technique or model type. We also explored feature

capabilities across all three tools, finding that BioAutoMATED

accommodates more model interpretation methods than the

other tools and is the only platform that incorporates a module

for sequence design. More details on the comparison between

BioAutoMATED, iLearnPlus, BioAutoML, and JADBio can be

found in STAR Methods.

To further assess the robustness of BioAutoMATED, espe-

cially in light of new large language models that were published

over the course of this study, we compared BioAutoMATED

models with pre-trained language models. We re-trained two

generic language models, DNABERT52 for nucleic acids and

ESM53 for proteins, on the same benchmark datasets as above

(see STAR Methods). For prediction of ribosome-binding sites,

toeholds, and synthetic nucleic acids, DNABERT outperforms

BioAutoMATED with a specific learning rate, or a parameter

that influences the speed of model training (Table S4). However,

when using the higher learning rate that is provided in the

example code, DNABERT fails to train predictive models for

any of the three tasks, with auROCs �0.5. DNABERT’s perfor-

mance appears to depend heavily upon the model parameters

selected, a barrier for easy adoption among non-ML practi-

tioners. To evaluate language models on the peptide dataset,

we used ESM,53 a large-scale model that produces a lower-

dimensional vector representation of each sequence called an

embedding. ESM embeddings used as input to scikit-learn-

based models exhibit substantial variations in performance

depending on the model used (Table S5). Overall, the average

R2 value across the three models using ESM embeddings

(0.538) was marginally higher than that of the best-performing

BioAutoMATED model (0.425), indicating that ESM embeddings
Cell Systems 14, 525–542, June 21, 2023 537

ll
OPEN ACCESS Methods
are a robust data representation method. These results suggest

that large languagemodels are a promising avenue for predictive

model generation and that pretraining models on large datasets

of nucleic acids and peptides can provide a strong performance

boost. However, it is important to note that the current usage of

both DNABERT and ESM requires architecture decisions and

technical skills that BioAutoMATED abstracts away from, and

automatically performs for, the user.

DISCUSSION

This work introduces and evaluates BioAutoMATED, a platform

for integrating and deploying AutoML tools for research of bio-

logical sequences. Compared with other AutoML methods,

BioAutoMATED offers several unique features: (1) it enables

sequence-specific data pre-processing and corrects for varia-

tion in sequence length, (2) it handles glycan sequences in addi-

tion to nucleotide and protein sequences, and (3) it enables

sequence design through a gradient ascent-based directed

design module. Additionally, BioAutoMATED accommodates a

wide variety of tasks and provides a comprehensive interpreta-

tion module for interrogating models. BioAutoMATED balances

minimal user input with multiple degrees of freedom relevant to

the computational and biological domains, ranging from thresh-

olds for binary classification to selecting activation map gradi-

ents for model interpretation. After basic user inputs and data

file uploading, BioAutoMATED proceeds hands-free. When the

architecture search concludes, the Python notebooks provided

by the platform can empower users to continue to explore

BioAutoMATED’s functionalities without needing to interact

with the underlying model-generation code.

BioAutoMATED provides practical advantages to its users and

can help domain experts validate their data-driven insights and

ask appropriate questions pertaining to the biological data at

hand. As exemplified by the various biological applications pre-

sented in this work, typical BioAutoMATED workflows might

include the following steps:

(1)First, BioAutoMATED readily accommodates input sequence

data, which can include nucleic acids, peptides, and glycans.

Based on these inputs, BioAutoMATED automatically generates

scrambled controls, which can help users answer the question

of whether subunit frequency alone predicts performance or

whether ML-driven analyses of sequence positions would be

useful.

(2)Second, BioAutoMATED automatically tests if the input da-

taset is large enough to implement models with better predictive

capabilities than that of randomized controls, which aids in

providing proper comparisons for its users and can inform users

when more data are needed.

(3)Third, BioAutoMATED automatically trains and evaluates a

wide range of model architectures. The best-performing model

can be used to make additional predictions and generate biolog-

ical insight.

(4)Lastly, BioAutoMATED automatically generates data

feature importance plots and attention maps, which readily pro-

vide information about which sequence regions of highest

potential interest to further investigate (e.g., highlighted

sequence logos from raw data that point to information-dense

motifs). Indeed, such empirical insights exemplify how AutoML
538 Cell Systems 14, 525–542, June 21, 2023
techniques can assist biologists in producing domain-specific

knowledge that could lead to subsequent questions, hypothe-

ses, models, and experiments.

The potential for BioAutoMATED to identify, train, and deploy

predictive models for systems and synthetic biology researchers

with minimal ML experience could help democratize the intersec-

tion of biology and computer science. State-of-the-art perfor-

mance in many ML models has often been achieved through

manual tailoring of architectures and associated parameters.

However, automating the search for architectures and hyperpara-

metersoffersnumerousbenefits: for instance, the timeandhuman

resources required to implement ML models can be drastically

reduced. As shown by the biological applications considered

here, BioAutoMATED achieves competitive performance when

benchmarked to published, manually tuned models, and

BioAutoMATED also outperforms similar AutoML tools. Addition-

ally, BioAutoMATED can improve reproducibility by facilitating

objective comparisons of different analysis methods54,55 – with

BioAutoMATED, simple models to act as a baseline for new algo-

rithms can be easily optimized and tuned for a fair comparison.

Using four different datasets from gene regulation, antibody-

drug binding, glycan immunogenicity and classification, and

toehold switch design, respectively, we have shown how

BioAutoMATED can automatically generate ML models to pre-

dict various forms of biological activity, as well as offer interpret-

ability and design features that can guide experiments in each of

these areas. Specifically, BioAutoMATED readily generated

high-performing binary classification and regression models

that predict translation efficiency from RBS sequence alone,

revealing that an adenine- and guanine-rich motif around RBS

positions 5–8 is a salient pattern in top-performing sequences

and producing de novo designed sequences that have high pre-

dicted translation efficiency using STORM. BioAutoMATED also

identified accurate models for the prediction of ranibizumab

binding to human IgG antibodies and revealed characteris-

tics—the importance of an FDY motif, as well as the lack of

importance of methionine, cysteine, and asparagine residues—

relevant to antibody design. For the diverse space of glycans,

BioAutoMATED generated models that accurately classify

phylogenetic domains, as well as models that accurately predict

immunogenicity to humans. Here, BioAutoMATED revealed that

mannose, rhamnose, colitose, and fucose are particularly impor-

tant to immunogenicity. Finally, BioAutoMATED identified high-

performing models that predict toehold switch activity from

sequence alone but showed that the models were only moder-

ately generalizable to toehold switches in other experimental

contexts. BioAutoMATED also revealed known conserved re-

gions and motifs important for toehold switch activity, and that

A-T binding between positions 20–30 is particularly meaningful.

BioAutoMATED’s STORM-designed sequences accommodate

user-specified constraints and can be readily tested to validate

what the models have learned.

Despite its broadapplicability, BioAutoMATED, andAutoMLas

a whole, have limitations. Such methods cannot wholly replace

‘‘human-in-the-loop’’ ML usage. BioAutoMATED and other

AutoML platforms should not replace critical, scientific evalua-

tion: the models and predictions that they provide need to be

carefully considered. For instance, as suggested by our study

of toehold switches, BioAutoMATED models that achieve high

ll
OPEN ACCESSMethods
performance on validation sets may not be accurate when

applied to new experimental contexts. When possible, model

predictions should be experimentally validated, and testing with

external validation datasets can help prevent model overfitting

and vet models that are less predictive than they seem. As

such, BioAutoMATED models should represent helpful mod-

ules—and not endpoints—for any scientific workflow: especially

in applications in which model performance is modest, the

models should be usedas a starting point for architecture andhy-

perparameter choices, helping scientific teamsmerge computa-

tionally obtained results with better-informed experiments.56

Due to the generality of its core functions, BioAutoMATED is

widely adaptable. Moving forward, it will be useful to integrate

BioAutoMATED with an ever-growing set of AutoML tools,

such as those that focus on natural language processing

(NLP)-based architectures,57 residual networks (ResNets),42

or ensemble models. Likewise, methods that focus on uncer-

tainty modeling could foster more robust and data-efficient

generalization. Future adaptations of BioAutoMATED could

extend the platform beyond biological sequences and

allow any sequence-like object (e.g., vector encodings or finger-

prints) as inputs, in addition tomore flexibly allowing interconver-

sion between nucleic acid and peptide sequences by integrating

tools such as the SeqLike library [https://github.com/modernatx/

seqlike?ref=pythonrepo.com].

Given its ease of use, speed, and performance, we anticipate

that BioAutoMATED will enable life scientists to readily develop

andutilizeMLmodels, helping todrivebiological research forward.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d METHODS DETAILS

B Installation and usage of BioAutoMATED

B User inputs

B Pre-processing and data cleaning

B Architecture search

B Class activation and saliency maps

B Naive design module

B Directed design module

B Transfer learning functionality

B Proof of concept with experimental data

B Scope of the platform

B Machine specifications and package environments

B Benchmarking against automated ML tools

B Benchmarking against pre-trained language models

d QUANTIFICATION AND STATISTICAL ANALYSIS
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

cels.2023.05.007.
ACKNOWLEDGMENTS

We thank Daniel Bojar for his input on glycan sequence analysis.We also thank

Timothy Kassis for the helpful discussions and advice relating to the imple-

mentation of deep-learning model architectures. We thank Max Atti English

and Miguel Alcantar for their helpful discussions on benchmarking datasets

and synthetic biology. We also thank Randal S. Olson for maintaining TPOT,

Haifeng Jin and François Chollet for maintaining AutoKeras, and Edvinas

Byla for maintaining and giving support in the use of DeepSwarm API.

This work was supported by Defense Threat Reduction Agency grant

HDTRA-12210032, the DARPA SD2 program, the Paul G. Allen Frontiers

Group, and the Wyss Institute for Biologically Inspired Engineering, Harvard

University (J.A.V., L.R.S., N.A.M., J.J.C.). This work is part of the Antibiotics-

AI Project, which is directed by J.J.C. and supported by the Audacious Project,

Flu Lab, LLC, the Sea Grape Foundation, Rosamund Zander and Hansjorg

Wyss for theWyss Foundation, and an anonymous donor. J.A.V. was also sup-

ported by an MIT-Takeda Fellowship and Siebel Foundation Scholarship.

L.R.S. was also supported by CONACyT grant 342369 / 408970, while

N.A.M. was also supported by an MIT Tata Center fellowship 2748460.

K.M.C. was supported as a Johnson & Johnson Undergraduate Research

Scholar and with a Barry Goldwater Scholarship and acknowledges current

funding from the Marshall Scholarship and Cambridge Trust. F.W. was sup-

ported by the National Institute of Allergy and Infectious Diseases of the Na-

tional Institutes of Health under award number K25AI168451.

AUTHOR CONTRIBUTIONS

J.A.V., L.R.S., K.M.C., P.R., and N.A.M. conceived the study. J.A.V., L.R.S.,

and K.M.C. integrated AutoKeras, DeepSwarm, and TPOT into the AutoML

code. J.A.V. extended the library for data robustness, model interpretation,

and sequence design. G.C. tested sequence design functions and wrote the

sequence mutagenesis module. R.P. tested all other functions. J.A.V. and

P.R. conceived and wrote the data pre-processing functions. J.A.V., L.R.S.,

and K.M.C. performed the AutoML analysis and designed figures. F.W. assis-

ted with data interpretation. All authors wrote and edited the manuscript.

J.J.C., T.K.L., and D.M.C. supervised the research.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: April 30, 2022

Revised: February 17, 2023

Accepted: May 22, 2023

Published: June 21, 2023

REFERENCES

1. Camacho, D.M., Collins, K.M., Powers, R.K., Costello, J.C., and Collins,

J.J. (2018). Next-generation machine learning for biological networks.

Cell 173, 1581–1592. https://doi.org/10.1016/j.cell.2018.05.015.

2. Ching, T., Himmelstein, D.S., Beaulieu-Jones, B.K., Kalinin, A.A., Do,

B.T., Way, G.P., Ferrero, E., Agapow, P.M., Zietz, M., Hoffman, M.M.,

et al. (2018). Opportunities and obstacles for deep learning in biology

and medicine. J. R. Soc. Interface 15, 20170387. https://doi.org/10.

1098/rsif.2017.0387.

3. Carbonell, P., Radivojevic, T., and Garcı́aMartı́n, H. (2019). Opportunities at

the intersectionofsyntheticbiology,machine learning,andautomation.ACS

Synth. Biol. 8, 1474–1477. https://doi.org/10.1021/acssynbio.8b00540.

4. Yang, K.K., Wu, Z., and Arnold, F.H. (2019). Machine-learning-guided

directed evolution for protein engineering. Nat. Methods 16, 687–694.

https://doi.org/10.1038/s41592-019-0496-6.

5. Chen, K.M., Cofer, E.M., Zhou, J., and Troyanskaya, O.G. (2019). Selene: a

PyTorch-based deep learning library for sequence data. Nat. Methods 16,

315–318. https://doi.org/10.1038/s41592-019-0360-8.

6. Avsec, �Z., Kreuzhuber, R., Israeli, J., Xu, N., Cheng, J., Shrikumar, A.,

Banerjee, A., Kim, D.S., Beier, T., Urban, L., et al. (2019). The Kipoi
Cell Systems 14, 525–542, June 21, 2023 539

https://github.com/modernatx/seqlike?ref=pythonrepo.com
https://github.com/modernatx/seqlike?ref=pythonrepo.com
https://doi.org/10.1016/j.cels.2023.05.007
https://doi.org/10.1016/j.cels.2023.05.007
https://doi.org/10.1016/j.cell.2018.05.015
https://doi.org/10.1098/rsif.2017.0387
https://doi.org/10.1098/rsif.2017.0387
https://doi.org/10.1021/acssynbio.8b00540
https://doi.org/10.1038/s41592-019-0496-6
https://doi.org/10.1038/s41592-019-0360-8

ll
OPEN ACCESS Methods
repository accelerates community exchange and reuse of predictive

models for genomics. Nat. Biotechnol. 37, 592–600. https://doi.org/10.

1038/s41587-019-0140-0.

7. Liu, B. (2019). BioSeq-Analysis: a platform for DNA, RNA and protein

sequence analysis based on machine learning approaches. Brief.

Bioinform. 20, 1280–1294. https://doi.org/10.1093/bib/bbx165.

8. Rawat, W., and Wang, Z. (2017). Deep convolutional neural networks for

image classification: a comprehensive review. Neural Comput. 29,

2352–2449. https://doi.org/10.1162/NECO_a_00990.

9. Zoph, B., Vasudevan, V., Shlens, J., and Le, Q.V. (2018). Learning transfer-

able architectures for scalable image recognition. arXiv. https://doi.org/

10.48550/arXiv.1707.07012.

10. Feurer, M., and Hutter, F. (2019). Hyperparameter optimization. In

Automated Machine Learning: Methods, Systems, Challenges the

Springer Series on Challenges in Machine Learning, F. Hutter, L.

Kotthoff, and J. Vanschoren, eds. (Springer International Publishing),

pp. 3–33. https://doi.org/10.1007/978-3-030-05318-5_1.

11. Pfisterer, F., Thomas, J., and Bischl, B. (2019). Towards human centered

AutoML. arXiv. https://doi.org/10.48550/arXiv.1911.02391.

12. Liang, J., Meyerson, E., Hodjat, B., Fink, D., Mutch, K., and Miikkulainen,

R. (2019). Evolutionary neural AutoML for deep learning. Proceedings of

the Genetic and Evolutionary Computation Conference GECCO ’19

(Association for Computing Machinery), pp. 401–409. https://doi.org/10.

1145/3321707.3321721.

13. Faes, L., Wagner, S.K., Fu, D.J., Liu, X., Korot, E., Ledsam, J.R., Back, T.,

Chopra, R., Pontikos, N., Kern, C., et al. (2019). Automated deep learning

design for medical image classification by health-care professionals with

no coding experience: a feasibility study. Lancet Digit. Health 1, e232–

e242. https://doi.org/10.1016/S2589-7500(19)30108-6.

14. He, X., Zhao, K., and Chu, X. (2021). AutoML: a survey of the state-of-the-

art. Knowl. Based Syst. 212, 106622. https://doi.org/10.1016/j.knosys.

2020.106622.

15. Elshawi, R., Maher, M., and Sakr, S. (2019). Automated machine learning:

state-of-the-art and open challenges. arXiv. https://doi.org/10.48550/

arXiv.1906.02287.

16. Zoph, B., and Le, Q.V. (2017). Neural architecture search with reinforce-

ment learning. arXiv. https://doi.org/10.48550/arXiv.1611.01578.

17. Mendoza, H., Klein, A., Feurer, M., Springenberg, J.T., and Hutter, F.

(2016). Towards automatically-tuned neural networks. Proceedings of

the Workshop on Automatic Machine Learning 64, 58–65.

18. Cai, H., Chen, T., Zhang,W., Yu, Y., andWang, J. (2017). Efficient architec-

ture search by network transformation. arXiv. https://doi.org/10.48550/

arXiv.1707.04873.

19. Elsken, T., Metzen, J.H., and Hutter, F. (2019). Neural architecture search:

a survey. arXiv. https://doi.org/10.48550/arXiv.1808.05377.

20. Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M., and Hutter, F.

(2021). Auto-sklearn 2.0: hands-free AutoML via meta-learning. arXiv.

https://doi.org/10.48550/arXiv.2007.04074.

21. Kotthoff, L., Thornton, C., Hoos, H.H., Hutter, F., and Leyton-Brown, K.

(2019). Auto-WEKA: automatic model selection and hyperparameter opti-

mization in Weka. In Automated Machine Learning, F. Hutter, L. Kotthoff,

and J. Vanschoren, eds. (Springer International Publishing), pp. 81–95.

https://doi.org/10.1007/978-3-030-05318-5_4.

22. Alaa, A., and Schaar, M. (2018). AutoPrognosis: automated clinical prog-

nostic modeling via bayesian optimization with structured kernel learning.

arXiv. https://doi.org/10.48550/arXiv.1802.07207.

23. Olson, R.S., and Moore, J.H. (2019). TPOT: A tree-based pipeline optimi-

zation tool for automating machine learning. In Automated Machine

Learning: Methods, Systems, Challenges the Springer Series on

Challenges in Machine Learning, F. Hutter, L. Kotthoff, and J.

Vanschoren, eds. (Springer International Publishing), pp. 151–160.

https://doi.org/10.1007/978-3-030-05318-5_8.

24. de Sá, A.G.C., Pinto, W.J.G.S., Oliveira, L.O.V.B., and Pappa, G.L. (2017).

RECIPE: A grammar-based framework for automatically evolving classifi-
540 Cell Systems 14, 525–542, June 21, 2023
cation pipelines. In Genetic Programming Lecture Notes in Computer

Science, J. McDermott, M. Castelli, L. Sekanina, E. Haasdijk, and P.

Garcı́a-Sánchez, eds. (Springer International Publishing), pp. 246–261.

https://doi.org/10.1007/978-3-319-55696-3_16.

25. A Romero, R.A., Y Deypalan, M.N., Mehrotra, S., Jungao, J.T., Sheils,

N.E., Manduchi, E., andMoore, J.H. (2022). Benchmarking AutoML frame-

works for disease prediction using medical claims. BioData Min. 15, 15.

https://doi.org/10.1186/s13040-022-00300-2.

26. Jin, H., Song, Q., and Hu, X. (2019). Auto-keras: an efficient neural archi-

tecture search system. Proceedings of the 25th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining KDD

’19 (Association for Computing Machinery), pp. 1946–1956. https://doi.

org/10.1145/3292500.3330648.

27. Byla, E., and Pang, W. (2019). DeepSwarm: optimising convolutional neu-

ral networks using swarm intelligence. arXiv. https://doi.org/10.48550/

arXiv.1905.07350.

28. Bogard, N., Linder, J., Rosenberg, A.B., and Seelig, G. (2019). A deep neu-

ral network for predicting and engineering alternative polyadenylation. Cell

178, 91–106.e23. https://doi.org/10.1016/j.cell.2019.04.046.

29. Valeri, J.A., Collins, K.M., Ramesh, P., Alcantar, M.A., Lepe, B.A., Lu, T.K.,

and Camacho, D.M. (2020). Sequence-to-function deep learning frame-

works for engineered riboregulators. Nat. Commun. 11, 5058. https://

doi.org/10.1038/s41467-020-18676-2.

30. Höllerer, S., Papaxanthos, L., Gumpinger, A.C., Fischer, K., Beisel, C.,

Borgwardt, K., Benenson, Y., and Jeschek, M. (2020). Large-scale DNA-

based phenotypic recording and deep learning enable highly accurate

sequence-function mapping. Nat. Commun. 11, 3551. https://doi.org/

10.1038/s41467-020-17222-4.

31. Liu, G., Zeng, H., Mueller, J., Carter, B., Wang, Z., Schilz, J., Horny, G.,

Birnbaum,M.E., Ewert, S., and Gifford, D.K. (2020). Antibody complemen-

tarity determining region design using high-capacity machine learning.

Bioinformatics 36, 2126–2133. https://doi.org/10.1093/bioinformatics/

btz895.

32. Bojar, D., Powers, R.K., Camacho, D.M., and Collins, J.J. (2021). Deep-

learning resources for studying glycan-mediated host-microbe interac-

tions. Cell Host Microbe 29, 132–144.e3. https://doi.org/10.1016/j.chom.

2020.10.004.

33. Angenent-Mari, N.M., Garruss, A.S., Soenksen, L.R., Church, G., and

Collins, J.J. (2020). A deep learning approach to programmable RNA

switches. Nat. Commun. 11, 5057. https://doi.org/10.1038/s41467-020-

18677-1.

34. Truong, A., Walters, A., Goodsitt, J., Hines, K., Bruss, C.B., and Farivar, R.

(2019). Towards automated machine learning: evaluation and comparison

of AutoML approaches and tools. 2019 IEEE 31st International Conference

on Tools with Artificial Intelligence (ICTAI) (IEEE Publications), pp. 1471–

1479. https://doi.org/10.1109/ICTAI.2019.00209.

35. Olson, R.S., Bartley, N., Urbanowicz, R.J., and Moore, J.H. (2016).

Evaluation of a tree-based pipeline optimization tool for automating data

science. Proceedings of the Genetic and Evolutionary Computation

Conference, GECCO ’16 (Association for Computing Machinery),

pp. 485–492. https://doi.org/10.1145/2908812.2908918.

36. Perez, L., and Wang, J. (2017). The effectiveness of data augmentation in

image classification using deep learning. arXiv. https://doi.org/10.48550/

arXiv.1712.04621.

37. Chen, V., Li, J., Kim, J.S., Plumb, G., and Talwalkar, A. (2021).

Interpretable machine learning: moving from mythos to diagnostics.

arXiv. https://doi.org/10.48550/arXiv.2103.06254.

38. Lopez, R., Gayoso, A., and Yosef, N. (2020). Enhancing scientific discov-

eries inmolecular biologywith deep generativemodels.Mol. Syst. Biol. 16,

e9198. https://doi.org/10.15252/msb.20199198.

39. Linder, J., Bogard, N., Rosenberg, A.B., and Seelig, G. (2020). A generative

neural network for maximizing fitness and diversity of synthetic DNA and

protein sequences. Cell Syst. 11, 49–62.e16. https://doi.org/10.1016/j.

cels.2020.05.007.

https://doi.org/10.1038/s41587-019-0140-0
https://doi.org/10.1038/s41587-019-0140-0
https://doi.org/10.1093/bib/bbx165
https://doi.org/10.1162/NECO_a_00990
https://doi.org/10.48550/arXiv.1707.07012
https://doi.org/10.48550/arXiv.1707.07012
https://doi.org/10.1007/978-3-030-05318-5_1
https://doi.org/10.48550/arXiv.1911.02391
https://doi.org/10.1145/3321707.3321721
https://doi.org/10.1145/3321707.3321721
https://doi.org/10.1016/S2589-7500(19)30108-6
https://doi.org/10.1016/j.knosys.2020.106622
https://doi.org/10.1016/j.knosys.2020.106622
https://doi.org/10.48550/arXiv.1906.02287
https://doi.org/10.48550/arXiv.1906.02287
https://doi.org/10.48550/arXiv.1611.01578
http://refhub.elsevier.com/S2405-4712(23)00151-5/sref17
http://refhub.elsevier.com/S2405-4712(23)00151-5/sref17
http://refhub.elsevier.com/S2405-4712(23)00151-5/sref17
https://doi.org/10.48550/arXiv.1707.04873
https://doi.org/10.48550/arXiv.1707.04873
https://doi.org/10.48550/arXiv.1808.05377
https://doi.org/10.48550/arXiv.2007.04074
https://doi.org/10.1007/978-3-030-05318-5_4
https://doi.org/10.48550/arXiv.1802.07207
https://doi.org/10.1007/978-3-030-05318-5_8
https://doi.org/10.1007/978-3-319-55696-3_16
https://doi.org/10.1186/s13040-022-00300-2
https://doi.org/10.1145/3292500.3330648
https://doi.org/10.1145/3292500.3330648
https://doi.org/10.48550/arXiv.1905.07350
https://doi.org/10.48550/arXiv.1905.07350
https://doi.org/10.1016/j.cell.2019.04.046
https://doi.org/10.1038/s41467-020-18676-2
https://doi.org/10.1038/s41467-020-18676-2
https://doi.org/10.1038/s41467-020-17222-4
https://doi.org/10.1038/s41467-020-17222-4
https://doi.org/10.1093/bioinformatics/btz895
https://doi.org/10.1093/bioinformatics/btz895
https://doi.org/10.1016/j.chom.2020.10.004
https://doi.org/10.1016/j.chom.2020.10.004
https://doi.org/10.1038/s41467-020-18677-1
https://doi.org/10.1038/s41467-020-18677-1
https://doi.org/10.1109/ICTAI.2019.00209
https://doi.org/10.1145/2908812.2908918
https://doi.org/10.48550/arXiv.1712.04621
https://doi.org/10.48550/arXiv.1712.04621
https://doi.org/10.48550/arXiv.2103.06254
https://doi.org/10.15252/msb.20199198
https://doi.org/10.1016/j.cels.2020.05.007
https://doi.org/10.1016/j.cels.2020.05.007

ll
OPEN ACCESSMethods
40. Repecka, D., Jauniskis, V., Karpus, L., Rembeza, E., Rokaitis, I., Zrimec,

J., Poviloniene, S., Laurynenas, A., Viknander, S., Abuajwa, W., et al.

(2021). Expanding functional protein sequence spaces using generative

adversarial networks. Nat. Mach. Intell. 3, 324–333. https://doi.org/10.

1038/s42256-021-00310-5.

41. Wan, F., Kontogiorgos-Heintz, D., and de la Fuente-Nunez, C. (2022).

Deep generative models for peptide design. Digit. Discov. 1, 195–208.

https://doi.org/10.1039/D1DD00024A.

42. He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for

image recognition. arXiv. https://doi.org/10.48550/arXiv.1512.03385.

43. Dalziel, M., Crispin, M., Scanlan, C.N., Zitzmann, N., and Dwek, R.A.

(2014). Emerging principles for the therapeutic exploitation of glycosyla-

tion. Science 343, 1235681. https://doi.org/10.1126/science.1235681.

44. Mohapatra, S., An, J., and Gómez-Bombarelli, R. (2021). GLAMOUR:

graph learning over macromolecule representations. arXiv. https://doi.

org/10.48550/arXiv.2103.02565.

45. Alam, J., Beyer, N., and Liu, H.W. (2004). Biosynthesis of colitose: expres-

sion, purification, and mechanistic characterization of GDP-4-keto-6-

deoxy-d-mannose-3-dehydrase (ColD) and GDP-l-colitose synthase

(ColC). Biochemistry 43, 16450–16460. https://doi.org/10.1021/bi0483763.

46. Planinc, A., Bones, J., Dejaegher, B., Van Antwerpen, P., and Delporte, C.

(2016). Glycan characterization of biopharmaceuticals: updates and per-

spectives. Anal. Chim. Acta 921, 13–27. https://doi.org/10.1016/j.aca.

2016.03.049.

47. Green, A.A., Silver, P.A., Collins, J.J., and Yin, P. (2014). Toehold switches:

de-novo-designed regulators of gene expression. Cell 159, 925–939.

https://doi.org/10.1016/j.cell.2014.10.002.

48. Pardee, K., Green, A.A., Takahashi, M.K., Braff, D., Lambert, G., Lee, J.W.,

Ferrante, T., Ma, D., Donghia, N., Fan, M., et al. (2016). Rapid, low-cost

detection of Zika virus using programmable biomolecular components.

Cell 165, 1255–1266. https://doi.org/10.1016/j.cell.2016.04.059.

49. Chen, Z., Zhao, P., Li, C., Li, F., Xiang, D., Chen, Y., Akutsu, T., Daly, R.,

Webb, G., Zhao, Q., et al. (2021). iLearnPlus: a comprehensive and auto-

mated machine-learning platform for nucleic acid and protein sequence

analysis, prediction and visualization. Nucleic Acids Res. 49, e60.

https://doi.org/10.1093/nar/gkab122.

50. Bonidia, R.P., Santos, A.P.A., de Almeida, B.L.S., Stadler, P.F., da Rocha,

U.N., Sanches, D.S., and de Carvalho, A.C.P.L.F. (2022). BioAutoML:

automated feature engineering and metalearning to predict noncoding

RNAs in bacteria. Brief. Bioinform. 23, bbac218. https://doi.org/10.1093/

bib/bbac218.

51. Tsamardinos, I., Charonyktakis, P., Papoutsoglou, G., Borboudakis, G.,

Lakiotaki, K., Zenklusen, J.C., Juhl, H., Chatzaki, E., and Lagani, V.

(2022). Just Add Data: automated predictive modeling for knowledge dis-

covery and feature selection. npj Precis. Oncol. 6, 38. https://doi.org/10.

1101/2020.05.04.075747.

52. Ji, Y., Zhou, Z., Liu, H., and Davuluri, R.V. (2021). DNABERT: pre-trained

bidirectional encoder representations from transformers model for DNA-

language in genome. Bioinformatics 37, 2112–2120. https://doi.org/10.

1093/bioinformatics/btab083.

53. Meier, J., Rao, R., Verkuil, R., Liu, J., Sercu, T., and Rives, A. (2021).

Language models enable zero-shot prediction of the effects of mutations

on protein function. bioRxiv, 29287–29303. https://doi.org/10.1101/2021.

07.09.450648.

54. Bergstra, J., Yamins, D., and Cox, D. (2013). Making a science of model

search: hyperparameter optimization in hundreds of dimensions for vision

architectures. Proceedings of the 30th International Conference on

Machine Learning (PMLR), pp. 115–123.

55. Sculley, D., Snoek, J., Rahimi, A., and Wiltschko, A. (2018). Winner’s

curse? On pace, progress, and empirical rigor. International Conference

on Learning Representations, ICLR, 1–4.

56. Seeber, I., Bittner, E., Briggs, R.O., de Vreede, T., de Vreede, G.-J., Elkins,

A., Maier, R., Merz, A.B., Oeste-Reiß, S., Randrup, N., et al. (2020).
Machines as teammates: a research agenda on AI in team collaboration.

Inf. Manag. 57, 103174. https://doi.org/10.1016/j.im.2019.103174.

57. Li, H.L., Pang, Y.H., and Liu, B. (2021). BioSeq-BLM: a platform for

analyzing DNA, RNA and protein sequences based on biological language

models. Nucleic Acids Res. 49, e129. https://doi.org/10.1093/nar/

gkab829.

58. Torrey, L., and Shavlik, J. (2009). Transfer learning. In Handbook of

Research on Machine Learning Applications, E. Soria, J. Martin, R.

Magdalena, M. Martinez, and A. Serrano, eds. (IGI Global), pp. 1–22.

59. McKinney, W. (2010). Data structures for statistical computing in python.

Proceedings of the of the 9th Python in Science conference (SCIPY

2010), pp. 56–61. https://doi.org/10.25080/Majora-92bf1922-00a.

60. Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P.,

Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., et al. (2020).

Array programming with NumPy. Nature 585, 357–362. https://doi.org/10.

1038/s41586-020-2649-2.

61. Budach, S., and Marsico, A. (2018). pysster: classification of biological se-

quences by learning sequence and structure motifs with convolutional

neural networks. Bioinformatics 34, 3035–3037. https://doi.org/10.1101/

230086.

62. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C.,

Corrado, G.S., Davis, A., Dean, J., Devin, M., et al. (2016). TensorFlow:

large-scale machine learning on heterogeneous distributed systems.

arXiv. https://doi.org/10.48550/arXiv.1603.04467.

63. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,

Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al. (2019). PyTorch: an

imperative style, high-performance deep learning library. arXiv. https://

arxiv.org/abs/arXiv:1912.01703.

64. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,

O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011).

Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12.

2825–28.

65. Yao, J., and Shepperd, M. (2020). Assessing software defection prediction

performance: why using the Matthews correlation coefficient matters.

Proceedings of the Evaluation and Assessment in Software Engineering

(Association for Computing Machinery), pp. 120–129. https://doi.org/10.

1145/3383219.3383232.

66. Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T.,

Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J.,

et al. (2020). SciPy 1.0: fundamental algorithms for scientific computing

in Python. Nat. Methods 17, 261–272. https://doi.org/10.1038/s41592-

019-0686-2.

67. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Torralba, A. (2016).

Learning deep features for discriminative localization. IEEE Conference

on Computer Vision and Pattern Recognition (CVPR)2016 (IEEE),

pp. 2921–2929. https://doi.org/10.1109/CVPR.2016.319.

68. GitHub (2017). raghakot/keras-vis: neural network visualization toolkit for

keras. https://github.com/raghakot/keras-vis.

69. Simonyan, K., Vedaldi, A., and Zisserman, A. (2013). Deep Inside convolu-

tional networks: visualising image classification models and saliency

maps. arXiv. https://arxiv.org/abs/arXiv:1312.6034.

70. Tareen, A., and Kinney, J.B. (2020). Logomaker: beautiful sequence logos

in python. Bioinformatics 36, 2272–2274. https://doi.org/10.1093/bioinfor-

matics/btz921.

71. Garruss, A.S., Collins, K.M., and Church, G.M. (2021). Deep representa-

tion learning improves prediction of LacI-mediated transcriptional repres-

sion. Proc. Natl. Acad. Sci. USA 118. e2022838118. https://doi.org/10.

1073/pnas.2022838118.

72. Lipton, Z.C., Berkowitz, J., and Elkan, C. (2015). A critical review of recur-

rent neural networks for sequence learning. arXiv. https://arxiv.org/abs/

arXiv:1506.00019.

73. Bryant, D.H., Bashir, A., Sinai, S., Jain, N.K., Ogden, P.J., Riley, P.F.,

Church, G.M., Colwell, L.J., and Kelsic, E.D. (2021). Deep diversification
Cell Systems 14, 525–542, June 21, 2023 541

https://doi.org/10.1038/s42256-021-00310-5
https://doi.org/10.1038/s42256-021-00310-5
https://doi.org/10.1039/D1DD00024A
https://doi.org/10.48550/arXiv.1512.03385
https://doi.org/10.1126/science.1235681
https://doi.org/10.48550/arXiv.2103.02565
https://doi.org/10.48550/arXiv.2103.02565
https://doi.org/10.1021/bi0483763
https://doi.org/10.1016/j.aca.2016.03.049
https://doi.org/10.1016/j.aca.2016.03.049
https://doi.org/10.1016/j.cell.2014.10.002
https://doi.org/10.1016/j.cell.2016.04.059
https://doi.org/10.1093/nar/gkab122
https://doi.org/10.1093/bib/bbac218
https://doi.org/10.1093/bib/bbac218
https://doi.org/10.1101/2020.05.04.075747
https://doi.org/10.1101/2020.05.04.075747
https://doi.org/10.1093/bioinformatics/btab083
https://doi.org/10.1093/bioinformatics/btab083
https://doi.org/10.1101/2021.07.09.450648
https://doi.org/10.1101/2021.07.09.450648
http://refhub.elsevier.com/S2405-4712(23)00151-5/sref54
http://refhub.elsevier.com/S2405-4712(23)00151-5/sref54
http://refhub.elsevier.com/S2405-4712(23)00151-5/sref54
http://refhub.elsevier.com/S2405-4712(23)00151-5/sref54
http://refhub.elsevier.com/S2405-4712(23)00151-5/sref0
http://refhub.elsevier.com/S2405-4712(23)00151-5/sref0
http://refhub.elsevier.com/S2405-4712(23)00151-5/sref0
https://doi.org/10.1016/j.im.2019.103174
https://doi.org/10.1093/nar/gkab829
https://doi.org/10.1093/nar/gkab829
http://refhub.elsevier.com/S2405-4712(23)00151-5/sref58
http://refhub.elsevier.com/S2405-4712(23)00151-5/sref58
http://refhub.elsevier.com/S2405-4712(23)00151-5/sref58
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1101/230086
https://doi.org/10.1101/230086
https://doi.org/10.48550/arXiv.1603.04467
https://arxiv.org/abs/arXiv:1912.01703
https://arxiv.org/abs/arXiv:1912.01703
http://refhub.elsevier.com/S2405-4712(23)00151-5/sref64
http://refhub.elsevier.com/S2405-4712(23)00151-5/sref64
http://refhub.elsevier.com/S2405-4712(23)00151-5/sref64
http://refhub.elsevier.com/S2405-4712(23)00151-5/sref64
https://doi.org/10.1145/3383219.3383232
https://doi.org/10.1145/3383219.3383232
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/CVPR.2016.319
https://github.com/raghakot/keras-vis
https://arxiv.org/abs/arXiv:1312.6034
https://doi.org/10.1093/bioinformatics/btz921
https://doi.org/10.1093/bioinformatics/btz921
https://doi.org/10.1073/pnas.2022838118
https://doi.org/10.1073/pnas.2022838118
https://arxiv.org/abs/arXiv:1506.00019
https://arxiv.org/abs/arXiv:1506.00019

ll
OPEN ACCESS Methods
of an AAV capsid protein by machine learning. Nat. Biotechnol. 39,

691–696. https://doi.org/10.1038/s41587-020-00793-4.

74. Dallago, C., Mou, J., Johnston, K.E., Wittmann, B.J., Bhattacharya, N.,

Goldman, S., Madani, A., and Yang, K.K. (2021). FLIP: benchmark tasks

in fitness landscape inference for proteins. bioRxiv. https://doi.org/10.

1101/2021.11.09.467890.

75. Sarkisyan, K.S., Bolotin, D.A., Meer, M.V., Usmanova, D.R., Mishin, A.S.,

Sharonov, G.V., Ivankov, D.N., Bozhanova, N.G., Baranov, M.S.,

Soylemez, O., et al. (2016). Local fitness landscape of the green fluores-

cent protein. Nature 533, 397–401. https://doi.org/10.1038/nature17995.

76. Gelman, S., Fahlberg, S.A., Heinzelman, P., Romero, P.A., and Gitter, A.

(2021). Neural networks to learn protein sequence–function relationships
542 Cell Systems 14, 525–542, June 21, 2023
from deep mutational scanning data. Proc. Natl. Acad. Sci. USA 118.

e2104878118. https://doi.org/10.1073/pnas.2104878118.

77. Xu, Y., Verma, D., Sheridan, R.P., Liaw, A., Ma, J., Marshall, N.M.,

McIntosh, J., Sherer, E.C., Svetnik, V., and Johnston, J.M. (2020). Deep

dive into machine learning models for protein engineering. J. Chem. Inf.

Model. 60, 2773–2790. https://doi.org/10.1021/acs.jcim.0c00073.

78. Zhang, C., Shine, M., Pyle, A.M., and Zhang, Y. (2022). US-align: universal

structure alignments of proteins, nucleic acids, and macromolecular com-

plexes. Nat. Methods 19, 1109–1115. https://doi.org/10.1038/s41592-

022-01585-1.

79. Zhang, Z., Zhou, L., Gou, L., and Wu, Y.N. (2019). Neural architecture

search for joint optimization of predictive power and biological knowledge.

arXiv. https://arxiv.org/abs/arXiv:1909.00337.

https://doi.org/10.1038/s41587-020-00793-4
https://doi.org/10.1101/2021.11.09.467890
https://doi.org/10.1101/2021.11.09.467890
https://doi.org/10.1038/nature17995
https://doi.org/10.1073/pnas.2104878118
https://doi.org/10.1021/acs.jcim.0c00073
https://doi.org/10.1038/s41592-022-01585-1
https://doi.org/10.1038/s41592-022-01585-1
https://arxiv.org/abs/arXiv:1909.00337

ll
OPEN ACCESSMethods
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Ribosome binding site sequences Höllerer et al.30 https://github.com/BorgwardtLab/

SAPIENs/tree/main/data

Peptide sequences Liu et al., 202031 https://github.com/gifford-lab/antibody-2019/

tree/master/data/training%20data

Glycan sequences Bojar et al., 202132 https://doi.org/10.1016/j.chom.2020.10.004

Toehold switch sequences Valeri, Collins, Ramesh, et al., 29

Angenent-Mari, et al.33
https://github.com/midas-wyss/engineered-

riboregulator-ML/blob/master/data/

newQC_toehold_data.csv

Software and algorithms

DeepSwarm Byla et al., 2019 https://github.com/Pattio/DeepSwarm

TPOT Olsen et al., 2019 https://github.com/EpistasisLab/tpot

AutoKeras Jin et al.26 https://autokeras.com

JADBio Tsamardinos et al.51 https://jadbio.com

BioAutoML Bonidia et al.50 https://github.com/Bonidia/BioAutoML/

iLearnPlus Chen et al. 37 https://github.com/Superzchen/iLearnPlus

DNABERT Ji et al.52 https://github.com/jerryji1993/DNABERT

ESM Meier et al.53 Zenodo: https://doi.org/10.5281/zenodo.7566741

BioAutoMATED This paper Zenodo: https://doi.org/10.5281/zenodo.7842505
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, James J. Collins (jimjc@

mit.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
This paper analyzes existing, publicly available data. The accession numbers for these datasets are listed in the key resources table.

All data needed to reproduce the figures and evaluate the conclusions in the paper can be found in the paper itself, the DockerHub

repository [https://hub.docker.com/repository/docker/jackievaleri/bioautomated/general], and/or the GitHub repository [https://

github.com/jackievaleri/BioAutoMATED].

All original code has been deposited at the GitHub repository [https://github.com/jackievaleri/BioAutoMATED] and is publicly

available as of the date of publication. DOIs are listed in the key resources table. Code used to reproduce the results presented in

this manuscript is available in the DockerHub and GitHub repositories. Instructions for package installations and using Docker

and GitHub are available at the GitHub repository.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHODS DETAILS

Installation and usage of BioAutoMATED
To facilitate the broad use of BioAutoMATED, we havemade our code available as aGitHub repository andDockerHub repository. All

modules are accessible with easy-to-modify Jupyter notebook code, which can be used for any new BioAutoMATED analysis. We

also provide all code and notebooks used to parse results from folders and generate the applicable figures for all plots shown here. If

users decide to install directly from theGitHub repository, theymust download and install packages according to the detailed instruc-

tions provided in the GitHub repository. The DockerHub installation automatically handles all packages and dependencies required
Cell Systems 14, 525–542.e1–e9, June 21, 2023 e1

mailto:jimjc@mit.edu
mailto:jimjc@mit.edu
https://hub.docker.com/repository/docker/jackievaleri/bioautomated/general
https://github.com/jackievaleri/BioAutoMATED
https://github.com/jackievaleri/BioAutoMATED
https://github.com/jackievaleri/BioAutoMATED
https://github.com/BorgwardtLab/SAPIENs/tree/main/data
https://github.com/BorgwardtLab/SAPIENs/tree/main/data
https://github.com/gifford-lab/antibody-2019/tree/master/data/training%20data
https://github.com/gifford-lab/antibody-2019/tree/master/data/training%20data
https://doi.org/10.1016/j.chom.2020.10.004
https://github.com/midas-wyss/engineered-riboregulator-ML/blob/master/data/newQC_toehold_data.csv
https://github.com/midas-wyss/engineered-riboregulator-ML/blob/master/data/newQC_toehold_data.csv
https://github.com/midas-wyss/engineered-riboregulator-ML/blob/master/data/newQC_toehold_data.csv
https://github.com/Pattio/DeepSwarm
https://github.com/EpistasisLab/tpot
https://autokeras.com
https://jadbio.com
https://github.com/Bonidia/BioAutoML/
https://github.com/Superzchen/iLearnPlus
https://github.com/jerryji1993/DNABERT
https://doi.org/10.5281/zenodo.7566741
https://doi.org/10.5281/zenodo.7842505

ll
OPEN ACCESS Methods
for running BioAutoMATED. With just two lines of coding after installing Docker, any Mac, Linux, or Windows user can run the pro-

vided Jupyter Notebooks and reproduce all figures and analyses in this manuscript.

We strive to support the use and re-use ofmodels generated by BioAutoMATED to improve generalizability, robustness, and repro-

ducibility. We have provided example notebooks in which BioAutoMATED was used to create models that predict new sequences

(such as those for externally supplied validation datasets). We have also provided example notebooks to perform interpretation and

design modules using trained BioAutoMATED models. As biological data collection is oftentimes incremental, we have provided an

example notebook to perform transfer learning; that is, re-training existing models on new data.58

User inputs
Several parameters can be optionally specified by the user to guide overall system operation. These parameters include maximum

run time per AutoML framework in minutes (max_runtime_minutes, default = 60); number of required cross-validation folds

(num_folds, default = 3); an option to produce text output (verbosity [0=Limited, 1=Complete], default = 0); which AutoML tools to

use (automl_search_techniques [’all’, ’deepswarm’, ’autokeras’, ’tpot’], default = ‘all’); and generation of an output backup folder

(do_backup, default = False). While the aforementioned parameters are optional, we require users to select the task (binary_classi-

fication, multiclass_classification, or regression), as well as target folders for models and results. These folders can be generic (e.g.,

./peptides/models/), and tags will automatically be added to specify the task and the AutoML tool used. Other internal search param-

eters specific to AutoKeras,26 DeepSwarm,27 and TPOT,23 such as population_size for TPOT and ant_count for DeepSwarm, can be

manually selected by the user. However, these search parameters are not required, and BioAutoMATED will revert to the default

parameters stated in the original packages if these search parameters are unspecified.

Another set of user-defined parameters dictate data pre-processing operations. The path and data file name must be specified.

The usermust indicate both the column name for the input column of sequences (input_col, default = ‘input’) and the column name for

the target column, which is usually a column of experimentally derived values (target_col, default = ‘target’). The sequence type (one

of [‘nucleic_acid’, ‘protein’, ‘glycan’]) must be manually defined and cannot be inferred from the alphabet composition due to the

overlap of letters in nucleic acid and protein sequences. We emphasize that the above parameters are easy and quick to specify,

and their specification does not require ML expertise from the user. For sequences of heterogeneous lengths, the ‘pad_seqs’ argu-

ment can be specified: either pad all sequences to themaximum length (‘max’), truncate all sequences to theminimum length (‘min’),

or truncate and pad all sequences to the average length (‘average’). Lastly, the automatic class binning (do_auto_bin, default = True)

will split data into positive and negative classes on the median of target values or a manually defined threshold (bin_threshold, must

be supplied additionally).

A data augmentation protocol for nucleic acid sequences provides an option to ‘‘spike in’’ complementary sequences and/or

reverse complementary sequences to the original sequences in the dataset, labeled with the original sequence’s label (augment_

data, one of [‘complement’, ‘reverse_complement’, or ‘both_comp’]). We recommend using this option only if the user is confident

that their nucleic acid sequences have similar functionality in reverse complement or complement strands (e.g., sequences with

strong secondary structure determinants). The user can specify an automatic data robustness test to evaluate model saturation (da-

ta_robustness, default = False). The user can also customize both interpretation modules (run_interpretation, default = False) and

design modules (run_design, default = False), covered below in the interpretation and design sections.

Pre-processing and data cleaning
The data pre-processing module reads in a data file, where any data file must be of a supported format (.csv, .xls, or .xslx), using

pandas59; the data file is then processed using NumPy.60 If the user provides a dataset containing entries other than nucleic acid,

peptide, or glycan sequences, the user is alerted, and the BioAutoMATED run is aborted. For minor, fixable issues (e.g., an unrec-

ognized character is found in a sequence), we report this issue, replace the offending character, and do not abort the BioAutoMATED

run. Glycan sequences are processed into ‘‘glycoletters’’, a set of monosaccharides and bonds described in Bojar et al.,32 by splitting

on parentheses, stripping and replacing all brackets, and appending the remaining glycoletters as a list. Sequences with non-stan-

dard characters are flagged: nucleic acids with characters other than A, T, C, and G; protein sequences with amino acids other than

the 20 canonical amino acids, plus selenocysteine and pyrrolysine; and glycan sequences with glycoletters other than the list of 1,027

glycoletters compiled by Bojar et al.32 For nucleic acid sequences, uracils are converted to thymines. Furthermore, a dictionary to

convert non-standard letters into the standard IUPAC alphabet code is employed: for example, R to A or G, Y to C or T, S to G or

C, etc. We emphasize that the actual sequence is not changed in this step, but all indicated letters are set to 1 in the one-hot encoded

matrix (see one-hot encoding details below). For protein sequences, a similar protocol is followed for abbreviations J (isoleucine or

leucine), Z (glutamine or glutamic acid), and B (arginine or asparagine). All sequences (excluding glycans) are converted to uppercase

letters for standardization, and all dash, space, period, and asterisk characters are replaced with the relevant gap letter for that

sequence type (N for nucleic acids, X for proteins and glycans). These gap letters are handled similarly to substitutions as described

above; e.g., a position with an N in a nucleic acid sequence will have a 1 in every row in the one-hot encoded matrix signifying all

nucleotides are possible.

Sequences with heterogenous lengths are padded according to the user-specified input (‘max’, ‘min’, or ‘average’, default =

‘max’). Data are augmented either with complement or reverse complement sequences (or both), wherein outputs are extended

with analogous labels to the original sequences. Only unique sequences distinct from the original list of input sequenceswill be added

to the augmented dataset. A list of scrambled sequences is generated by randomly shuffling every position for every sequence in the
e2 Cell Systems 14, 525–542.e1–e9, June 21, 2023

ll
OPEN ACCESSMethods
set. Finally, a trimmed alphabet (where the alphabet corresponds to ATCG for nucleic acid sequences, etc.) is produced such that the

alphabet is only comprised of letters that appear in any of the sequences. This step can reduce the dimensionality of the glycan al-

phabets from the maximum 1,027 glycoletters to a more streamlined �400 glycoletters, improving both compute time and model

performance. Both the original sequence list and the scrambled sequence lists have their order shuffled to ensure randomness.

Next, all sequences, original and scrambled, are vectorized as one-hot encodings and reshaped as input for each specific model

type. One-hot encoding is a way to represent sequences with a set of characters inmatrix form (a requirement for manyML systems).

For example, a one-hot encoding representation of a DNA sequence is a matrix with four rows, one for each nucleotide, and k col-

umns, one for each position in the sequence. In the one-hot encodingmatrix, there is a one if a nucleotide occurs in that position and a

zero elsewhere, so that each column typically sums to one. This one-hot encoding function is adapted from the pysster61 library. For

TPOT model inputs, the one-hot encoded matrix has an argmax function applied along the columns to generate a ‘numerical_da-

ta_input’. For DeepSwarm and AutoKeras model inputs, the one-hot encoded matrix is generated along with a numerical data array

that has been reformatted along four dimensions: a list of x arrays each of size y, z becomes an array of size x, z, y, 1, where the last

dimension is a dummy dimension, so that sequences are treated like three-dimensional images. Functions to revert one-hot matrices

to sequences were developed for all models and can be used by the user or different modules.

Two independent pre-processing routines are automatically applied to the target values, depending on the prediction task defined

by the user (i.e., regression or binary classification). For regression tasks, target numerical values are transformed to follow a uniform

distribution between -1 and +1 using quantile information to standardize model creation and evaluation. In the case of classification

tasks for targets with floating point numerical values, automatic or manual thresholding (depending on ‘automatic_bin’) can be

applied after quantile transformation, with the default threshold at 0.5. For multi-class classification tasks, we expect the output col-

umn to consist of labels with text-based categorical classes (e.g., three classes with the labels ‘‘a’’, ‘‘b’’, and ‘‘c’’). As such, we do not

perform additional pre-processing on multi-class classification labels.

Lastly, the dataset of sequences is automatically split into a user-specified number of ‘‘folds’’, where each fold is an equivalent

portion of the dataset used to assess the model’s ability to generalize, called k-fold cross validation. For example, a three-fold split

would split the dataset into thirds, and train three models: one model trained on the first two folds and then tested on the third fold;

one model trained on the first and third fold and tested on the second fold; and one model trained on the last two folds and tested on

the first one. All performance values reported in the text as ‘‘one of k models’’ refers to k-fold cross validation.

Architecture search
After the pre-processing module is completed, appropriate inputs and outputs can be supplied to the model searches run by the

three different AutoML backends. DeepSwarm takes the numerical data input as input and the target values as output (transformed

as described above) with a ‘to_categorical’ transformation applied to it. TPOT takes the same numerical data as input and the target

values as output without applying a categorical transformation. AutoKeras takes the one-hot encoded matrix input and the target

values as output with no categorical transformation applied. Before DeepSwarm proceeds with the architecture search, a .yaml

file is updated with parameters as follows: binary classification tasks optimize with respect to the binary cross-entropy loss, with

the final layer having an output shape of 2; multi-class classification tasks optimize with respect to categorical cross-entropy

loss, with an output shape equivalent to the number of categories in the data; and regression tasks optimize with respect to the

mean squared error, with an output shape of 1. All models use the Adam optimizer by default. The user specifies the ant count,

maximum depth search, epochs to train each model in the iterative loop, and final epochs to train the best model. For classification

models, a softmax activation function is applied to the output node, while regression models apply a linear activation on the output

node. The model architecture search explores filter sizes of 8, 16, 32, and 64, and kernel sizes of 1, 3, 5, and 7 for Conv2DNodes

(standard convolutional filters). The model search explores output sizes of 30, 64, 128, and 256 for DenseNodes. The input node

shape is automatically inferred from the shape of the data. All other arguments revert to DeepSwarm defaults. This parameter file

(.yaml) is saved for the user’s records.

Architecture search then proceeds for DeepSwarm models as specified in the original package documentation, where the

DeepSwarm backend responsible for optimization is defined; the topology, or architecture, is found for a given dataset; the discov-

ered topology is evaluated; and the base trained model is evaluated. Likewise, for AutoKeras, either the ImageClassifier or

ImageRegressor object is used to train and find the optimal AutoKeras model, and said model is then fit to the data. The optimal

AutoKeras graph is written to a PDF file for ease of interpretation. Analogously, the TPOT architecture search uses the

TPOTClassifier and TPOTRegressor objects to find and fit the best model. When the optimal architecture has been found using

all available training data, a k-fold model is trained over the user-defined number of folds and evaluated according to the task.

The DeepSwarm, AutoKeras, and TPOT architecture training stages are back-ended by TensorFlow,62 PyTorch,63 and scikit-learn.64

For classification tasks, the ROC curves for each class are plotted along with the macro- and micro-averaged auROC. The Mat-

thews correlation coefficient (MCC) for each class is computed as well. We report both MCC and the auROC, noting that the MCC

metric provides a complete and reliable picture of the classifier’s power in a single metric that is agnostic to class-size imbalances.65

The MCC collapses the confusion matrix down to a single number, and as such provides information on both sensitivity and spec-

ificity of a classifier. In comparison, auROC does not readily account for class-size imbalances, which makes it prone to potential

misrepresentations of the predictive value of trained systems. However, auROC is a commonmetric that is ubiquitous in the ML liter-

ature for classifiers, and thus is also reported in our system to permit ease of comparison with previously developed classifiers (which

usually only report auROC). For regression tasks, the Spearman R, Pearson R, mean absolute error (MAE), and R2 values are
Cell Systems 14, 525–542.e1–e9, June 21, 2023 e3

ll
OPEN ACCESS Methods
computed. These metrics are computed for each fold individually and globally for all folds (compiled_predictions) using scikit-learn64

and SciPy66 functions. Models trained on scrambled inputs, adhering to the optimal architecture found with the original data, are

evaluated similarly to evaluate the effect of nucleotide, amino acid, or monosaccharide/bond composition on model performance.

Results are written to text files (all_results.txt) in the output folders for each model. If the user indicates that a data robustness

test should be performed, then provided the dataset length is greater than 1,000 sequences, the size of the dataset is sequentially

halved, and the best architecture is used to train a model on that available data. We note that this experiment does not address the

effect of less data on finding the optimal architecture; rather, it analyzes how effectively the architecture returned by AutoML can be

trained on sequentially less and less data. Lastly, one final model is fit with all data with the optimal architecture, and a deployable

model is saved along with a model architecture summary.

Feature importance and in silico mutagenesis plots

Our interpretation module includes several options for users. First, we offer the ability to assess feature importance for each position

in an average sequence as predicted by the best-performing TPOT model. Although the TPOT models sometimes underperform

models generated by AutoKeras or DeepSwarm, we offer feature importance analysis for TPOT models, as it is standard and

supported by other automated ML tools like JADBio, BioAutoML, and iLearnPlus. Feature importance—the degree to which each

position in a sequence causes variability in model predictions—is assessed within many scikit-learn models via the built-in feature

importance functionality. Some scikit-learn models do not support feature importance, which triggers a notification to the user that

feature importance cannot be computed for this model. For models that are a collection of multiple models—such as a random forest

model with multiple estimators—error bars are computed by calculating the standard deviation of the feature importance for each

model in the collection. If the model is not a collection of multiple estimators, no error bars can be computed.

Beyond TPOT models, in silico sequence mutagenesis plots are generated for all models produced by BioAutoMATED as an

additional way to assess the importance of each position in a sequence. First, subsets of sequences are selected for analysis.

For datasets with two or more classes, sequences are randomly sampled from each class. For datasets with continuous labels

(even if they are used in a binary classification task), sequences are randomly selected from the top 10th percentile, the bottom

10th percentile, and a random sampling between the 20th and 80th percentiles. We sample from these percentile-based subsets,

even for binary classification, to elucidate trends on the extreme ends of performance, e.g., the top-performing and poorly-perform-

ing sequences. For each set of N sequences (where N = sample_number_mutagenesis, default = 50), a sequence logo is generated of

the raw sequences to aid in baseline sequence interpretation. Then, all possible subunit changes are generated, converted into one-

hot encoded sequences appropriate for use in the model, and then passed as input to the previously trained model to predict the

scores of these mutated one-hot encoded sequences. These scores are recorded, and the standard deviation of the model scores

at each position is computed and plotted with 95% confidence intervals.

Class activation and saliency maps
Along with the aforementioned interpretation tools, additional techniques from the computer vision community are included for an-

alyses of more complex neural networks. Saliency maps and class activation maps both provide methods of assessing the model

‘‘attention’’ to each nucleotide, amino acid, or monosaccharide/bond at each position in a set of sequences. Class activation

maps are generated by calculating user-specified gradients with respect to user-specified layers. In the absence of a specific

user request, sensible defaults allow the automatic generation of these maps. By using the learned model weights directly, class

activation maps uncover specific subunits at specific positions that play outsized roles in model predictions. Sequence logos are

then generated automatically from the class activationmaps to facilitate functional understanding of the sequence. Similarly, saliency

maps—which differ from class activation maps in themethod used to calculate attention—are generated by again finding user-spec-

ified gradients with respect to user-specified layers. The sequence logos of the weights of these saliency maps can then be

generated.

For the optimal DeepSwarm model, class activation maps67 are visualized with the visualize_activation function from keras-vis.68

Gradients can be modified with a function of the user’s choice (class_activation_map_grad_modifier), with one of the following

options: ‘absolute’, ‘relu’, ‘negative’, ‘invert’, ‘small_values’, or None, which does notmodify any gradients. The layer index – the spe-

cificmodel layer whose filters should be visualized – can also be specified (class_activation_map_layer_index). Class activationmaps

are then generated for a sample of N sequences (where N = sample_number_class_activation_maps, default = 100) and subse-

quently averaged over all N sequences. Likewise, the saliency maps69 are generated with the best DeepSwarm model using the

visualize_saliency function from keras-vis. Users can specify the following arguments: saliency_map_grad_modifier, saliency_

map_layer_index, and sample_number_saliency_maps.

We note that class activation maps are most useful when visualizing a layer close to the last layer. If this is not the case, we recom-

mend using saliency maps instead. We also note that for both saliency maps and class activation maps, the output may be less infor-

mative if the last layer is fully connected and has a softmax activation applied. In this case, the activation function can be swapped out

for a linear activation function. For both visualization techniques, a sequence logo is generated using LogoMaker70 to aid in interpre-

tation. Glycoletters are converted into single character abbreviations to be represented in a sequence logo. For saliency map

sequence logos, the matrix of saliency map counts is converted to weights, while activation map counts are converted to

probabilities (an arbitrary design choice). BioAutoMATED automatically handles axis labelling, color schemes, and figure size

standardization.
e4 Cell Systems 14, 525–542.e1–e9, June 21, 2023

ll
OPEN ACCESSMethods
Naive design module
If the run_design option is selected, then the user has several options for design via random sequence mutagenesis. First, the user

can select how many positions they would like to mutate per sequence (k) and how they would like to mutate sequences (‘random’,

‘constrained_random’, ‘blocked’, or ‘constrained_blocked’). The blocked mutagenesis method generates every possible k-mer and

then tiles the sequence with these k-mers. Upon sampling sequences from similar sets as described in the interpretation module, a

random sample of de_novo_num_seqs_to_test (default = 100) is selected from each set. Depending on the alphabet size, sequence

length, and k, the module may lower k based on a pre-determined threshold set to prevent excessive compute use. All mutated

sequences are then generated.

Sequence constraints are enforced before passing mutated sequences through a predictive model if a constraint_file_path is pro-

vided and the design method is either ‘constrained_random’ or ‘constrained_blocked’. This constraint file must contain the following

information by column: (1) type of constraint (one of [‘exact_seq’ or ‘reverse_complement’]); (2) exact sequence if constraint type is

‘exact_seq’; (3) start position; (4) end position; (5) complement start; and (6) complement end. For example, a constraint specifying

that the exact nucleotides ‘‘AGA’’ must be present in position 0–2 in any generated sequence would have a row reading: ‘exact_seq’;

‘‘AGA’’; 0; 2; -; -. For a reverse complement constraint enforcing that the letters in positions 16–19must be the reverse complement of

bases in positions 0–3, the row would read: ‘reverse_complement’; -; 0; 3; 16; 19. The reverse complement constraint may only be

specified for nucleic acid sequences, while any sequence type can have an exact sequence constraint. All constraint sequences are

cleaned and processed according to the same guidelines in the pre-processing module (e.g., uracils are converted to thymines in

nucleic acid sequences, and characters are standardized in upper case). The constraint-enforced list of mutated sequences and

the original sequences are then passed to the previously trained predictive model. The mutated sequences are written to a csv

file in the design folder and are plotted adjacent to the original sequences and the STORM-designed sequences (below). These plots

are generated for all sequences, as well as the top 10% of sequences generated with each method. A histogram of the pairwise

cosine distances between each set of sequences is plotted in order to evaluate similarity. These plots are written to the design folder

along with a sequence logo of the mutated sequences for visual comparison.

Directed design module
The directed design module is extended from SeqProp, as described in Bogard et al.28 and STORM as adapted in Valeri, Collins,

Ramesh et al.29 Here, our extension provides many additional degrees of flexibility and methods for customization. As with naive

design, the user can specify any constraint file for design to adhere to (constraint_file_path), as well as several sequences to test

(storm_num_seqs_to_test, default = 5). The user can set the class of interest (class_of_interest, default = 1 for classification and

0 for regression), the positive class in a binary classification task), and the target label value that sequences should be optimized

to obtain (target_y, default = 1, the highest value in a normalized dataset). The user can also specify the number of STORM optimi-

zation rounds to perform (num_of_optimization_rounds, default = 5). After these user parameters are set, the computation proceeds

as described in Valeri, Collins, Ramesh et al.29

To facilitate optimization for any nucleic acid, protein, or glycan sequence, we have adapted the entire SeqProp library fromBogard

et al.28 to execute with any alphabet and alphabet size (extended from the four-letter nucleotide library) as well as any sequence

length, any constraint, and any architecture of DeepSwarm model. Complete documentation may be found in seqprop_helpers.py

and integrated_design_helpers.py. In short, the position weight matrix (PWM) of a one-hot encoded sequence is added as a layer to a

copy of the previously trained best DeepSwarmmodel. The PWM layer may vary during training, but all other layers are frozen so that

backpropagation acts solely on the PWM, with the optimization minimizing the difference between the target value and the actual

predicted value. An Adam optimizer with a learning rate of 0.001, beta_1 of 0.9, and beta_2 of 0.999, along with an Early Stopping

regime that monitors the loss with a min_delta of 0.01 and patience of 2 is used to train the model for 50 epochs with 1000 steps per

epoch. This Early Stopping regime is a relatively strict procedure intended to produce sequences with sufficient diversity. The

optimized PWM is then cleaved from the model and converted back to a sequence. While the STORM optimizer may converge to

a perfect target during the STORM optimization, the predicted value corresponding to the final sequence may be lower because

the sparse one-hot matrix corresponding to the raw sequence may predict a different value than the tuned position weight matrix.

Nevertheless, this optimization protocol usually results in amore substantial increase in predicted score than in randommutagenesis.

We note that this gradient ascent optimization regime is appropriate for producing a small number of redesigned sequences because

the resulting sequences are often limited in diversity and the protocol takes a substantial amount of time per sequence. Despite this

limitation, these sequences are typically higher-performing than those obtained from random mutagenesis, and previous work has

shown that the predicted scores translate well to in vitro efficacy.29 The original model score is reported alongside the STORM-pre-

dicted score (i.e., the score predicted by the PWM-fusion model) and visualized adjacent to the naively designed sequences and

original sequences.

Transfer learning functionality
Depending on the underlying model type, we demonstrate multiple techniques to re-train models: these include freezing certain

layers of the model during re-training, initializing a new model with the parameters of the best BioAutoMATED model, and creating

new models within an existing ensemble that are then trained on new data. Users may benefit from the option to specify multiple

datasets for more robust fine-tuning or validation.71 For example, a user may upload a large RBS dataset from E. coli, use

BioAutoMATED to find a predictive model for translation efficiency, and subsequently re-train that model on a second RBS dataset
Cell Systems 14, 525–542.e1–e9, June 21, 2023 e5

ll
OPEN ACCESS Methods
from another strain of E. coli. These functionalities can contribute to maintaining the relevance of BioAutoMATED models, even as

biological dataset sizes continue to grow in size and quality.

To facilitate re-use of the models generated by BioAutoMATED, we have provided a Jupyter notebook with examples demon-

strating how to load and re-train any model produced by BioAutoMATED. We first load a generic DeepSwarm model and print a

model summary with the current architecture, state of the model (i.e., a state variable describing whether the model is currently train-

able), and the number of trainable parameters in the model. In the provided example, we arbitrarily specify that all layers except the

last two layers should be frozen during the next round of training, which, as we also demonstrate, produces a deployable model. We

then show an example loading an AutoKeras model and re-using the weights of this model to initialize and train a new model. We

demonstrate how to load an AutoKeras model and re-use the architecture, but not the weights, to train a newmodel. Lastly, we apply

several different methods for ‘‘incremental learning’’ on TPOT scikit-learn-based models. After loading a model, we first check if the

model accommodates the partial_fit function, which allows a user to resume training based on the current state of the model. Un-

fortunately, the partial_fit functionality is only applicable for a small number of models (as detailed in [https://scikit-learn.org/0.15/

modules/scaling_strategies.html#incremental-learning]). Models not compatible with the partial_fit function cannot be fully re-

trained from a specified starting point, but a new estimator (i.e., a new model in the ensemble) can be added, so that re-training

with new data will update the newest model only. For this option, the ‘warm_start’ parameter can be changed, and the number of

estimators in the model can be increased by one. To facilitate these changes, we print out a list of keys that must be manually

changed by the user and show an example modifying these parameters and re-training the model.

Proof of concept with experimental data
For ribosome binding site (RBS) sequence analyses, the training and test sets of RBS sequences from the dataset collected and

analyzed by Höllerer et al.30 were downloaded from the following GitHub link: [https://github.com/BorgwardtLab/SAPIENs/tree/

main/data]. The validation tasks described in Table S1 were performed using the test set. For binary classification tasks, the

BioAutoMATED platform inferred an automatic threshold for the median value used to separate positive and negative classes. For

multi-class classification tasks, the data were split into four quartiles and labeled as ‘‘a’’, ‘‘b’’, ‘‘c’’, and ‘‘d’’ classes, where RBS

sequences with the ‘‘a’’ label were in the bottom quartile and RBS sequences with the ‘‘d’’ label were in the top quartile. For our

augmentation tests (Figure S3), we aimed to highlight a case where data augmentation is essential. As such, we artificially limited

ourselves to the ‘‘small data’’ domain by using a dataset of only the first 2,000 sequences. All other experimental and model hyper-

parameters remained set to their default values.

For all results pertaining to peptide sequences, training and testing data as described in Liu et al.31 were retrieved from the

following GitHub link: [https://github.com/gifford-lab/antibody-2019/tree/master/data/training%20data]. Regression data were

downloaded from the full_regression folder, giving a total of 67,769 sequences with labels. Classification data were downloaded

from the hold_out_classification folder, giving a total of 63,400 sequences in the training set and 471 sequences in the test set

(the latter of which was used to compute external validation tests, as in Table S1). Binary and multi-class classification pre-process-

ing were identical to those employed for the RBS datasets. All other arguments were set to their default values.

For binary classification tasks on glycans, Table S2 from Bojar et al.32 was used as input for glycan immunogenicity modeling,

giving 636 immunogenic glycans and 684 non-immunogenic glycans. For multi-class classification tasks on glycans, Table S1

from Bojar et al.32 was used as input for phylogenetic domain classification, with 34 archaea, 5,856 bacteria, 6,635 eukarya, and

149 virus glycan sequences, giving a total of 12,674 sequences. We note here that viruses are classified as a phylogenetic domain

for analysis purposes. Unless otherwise specified, for all binary classification tasks, glycan sequences were padded to maximum

length. For multi-class classification tasks, glycan sequences were padded to average length, due to the larger number of examples

and the high dimensionality of the glycan sequence composition. All padding options are explored in Figure S4.

We analyzed toehold switch sequences as described in Valeri, Collins, Ramesh et al.29 Training data were downloaded from the

following GitHub link: [https://github.com/midas-wyss/engineered-riboregulator-ML/blob/master/data/newQC_toehold_data.csv].

We processed the data in the same manner as Valeri, Collins, Ramesh et al.29 and retained only sequences with ON_qc and OFF_qc

scores over 1, resulting in 91,534 59-nucleotide sequences. The ‘‘ON’’ column was used as the target value for all BioAutoMATED

models. External datasets for the validation described in Table S2 were obtained from the same GitHub repository at the following

link: [https://github.com/midas-wyss/engineered-riboregulator-ML/tree/master/clean_figures/fig4/make_tf_learning_models], con-

taining both the Green et al.47 and Pardee et al.48 datasets.

For synthetic nucleic acids, we generated 100,000 random 20-nucleotide sequences. Then, an artificial target score was assigned

to each sequence by summing up the scores for each nucleotide in the sequence. We arbitrarily designed a scoring system where A

confers 1 point, T confers 2 points, C confers 3 points, and G confers 4 points. This set of sequences and targets should be easy for

any model to learn due to its rule-based simplicity, so we used this dataset as a positive control task to ensure that BioAutoMATED

performed as expected.

For all datasets, unless otherwise specified, the maximum runtime was set to 60 minutes. For glycan datasets, the maximum

runtime was set to 180 minutes. For all datasets, the number of folds was set to 3, and DeepSwarm and TPOT parameters

were set to default values. Interpretation module parameters were as follows: sample_number_class_activation_maps = 100; class_

activation_grad_modifier = absolute; class_activation_layer_index = -2; sample_number_saliency_maps = 100; saliency_map_grad_

modifier = absolute; saliency_map_layer_index = -1; and sample_number_mutagenesis = 50. Design module parameters

were as follows: k = 3; substitutition_type = random; target_y = 1; class_of_interest = 1; de_novo_num_seqs_to_test = 100;
e6 Cell Systems 14, 525–542.e1–e9, June 21, 2023

https://scikit-learn.org/0.15/modules/scaling_strategies.html#incremental-learning
https://scikit-learn.org/0.15/modules/scaling_strategies.html#incremental-learning
https://github.com/BorgwardtLab/SAPIENs/tree/main/data
https://github.com/BorgwardtLab/SAPIENs/tree/main/data
https://github.com/gifford-lab/antibody-2019/tree/master/data/training%20data
https://github.com/midas-wyss/engineered-riboregulator-ML/blob/master/data/newQC_toehold_data.csv
https://github.com/midas-wyss/engineered-riboregulator-ML/tree/master/clean_figures/fig4/make_tf_learning_models

ll
OPEN ACCESSMethods
storm_num_seqs_to_test = 5; num_of_optimization_rounds = 5. For all sequences except toehold switch sequences, no constraints

were specified. For toehold switch sequences, substitution_type was set to constrained_random and a constraint file that listed the

following constraints was supplied: (1) ‘exact_sequence’; ‘‘AACAGAGGAGA’’; 30; 40; -; -. (2) ‘exact_sequence’; ‘‘AUG’’; 47;49; -; -.

(3) ‘reverse_complement’; -; 12; 20; 50; 58. and (4) ‘reverse_complement’; -; 24; 29; 41; 46. Timemeasurements, as in Figure S2, were

quantified with these design parameters. For the designed sequence results shown in Figures 2J, 2K, 3G, 3H, 4D, 4E, and 5G, the

design parameters were modified to k = 1 and num_of_optimization_rounds = 3, with all other parameters kept the same.

Scope of the platform
To guide users in applying BioAutoMATED to their datasets, we offer recommendations for dataset properties. These recommenda-

tions enable users to best maximize the utility of our tool in practice. Note that these are not intended to be hard rules: rather, our

suggestions provide additional context for specific types of datasets.

First, we consider sequence length. We recommend using sequences of up to 500 nucleotides, amino acids, or monosaccharides/

bonds. Sequences greater than 1,000 subunits in length may be modeled well by BioAutoMATED, but the time required to produce

models scales with the length of sequences. Additionally, recurrent neural networks, which are known for their ability tomodel longer-

range sequence interactions,72 are not currently evaluated within BioAutoMATED, so the types of models we assess may not be

appropriate for extremely long-range sequences. With these limitations in mind, we have evaluated performance over additional da-

tasets with longer-range sequences to assess the scalability of BioAutoMATED. We tested the AAV protein dataset introduced by

Bryant et al.73 and recommended as a benchmark dataset in Dallago, Mou et al.74 for testing models that map adeno-associated

virus capsid protein sequences �740 amino acids long. These AAV capsid protein sequences have a large conserved region,

with mutations limited to a 28 amino acid region corresponding to the binding interface, but were one of the longer protein datasets

with labelled data. This dataset predictably takes a longer amount of time to run, with each AutoML tool taking between 1 and �10

hours to find the best regression model. However, the best BioAutoMATED model outperforms the best reported model applied to

this dataset for randomly sampled splits, with a Spearman correlation of 0.925 on cross-fold validation and a Spearman correlation of

0.930 on the test set (as compared to the best reported model, which achieves a Spearman correlation of 0.92 on the test set). To

assess long range sequences with mutations throughout the length of a sequence, instead of clustered in a shorter region, we

analyzed a set of avGFP proteins of length 237 reported by Sarkisyan et al.75 and benchmarked in Gelman et al.76 and Xu et al.77

Here, BioAutoMATED produces models with a Pearson correlation of 0.970 on cross-fold validation and a Pearson correlation of

0.936 on the test set. Thesemodels are generated in a few hours, and their Pearson correlation value is comparable to the >0.9 Pear-

son correlation values reported by Gelman et al.76

Users may also benefit from additional guidelines on the number of sequences per dataset and the heterogeneity of datasets. We

have tested BioAutoMATED with datasets of hundreds of thousands of sequences. Depending on the compute power afforded by

the user’s machine, any user may be able to model millions of sequences. However, BioAutoMATED is fastest for datasets of less

than half a million sequences and has not yet been tested with larger datasets. One option that users have is to run BioAutoMATED

with a subset of their sequences to find a starting point for their architecture search, and then explore a more limited set of models

based on the results fromBioAutoMATED. Additionally, BioAutoMATED has not been tested on datasets with large class imbalances,

which can be common when studying certain questions. We recommend caution and additional scrutiny if using datasets with

greater than 90%/10% class imbalance or datasets with unexpected distributions of target values. Lastly, we currently only provide

sequence length normalization options by padding or truncating the right end of sequences. Future improvements on

BioAutoMATED may include more advanced sequence length normalization or incorporate more sophisticated alignment abilities,

such as those reported recently by Zhang et al.78

Machine specifications and package environments
A MacBook with a 2.2 GHz Intel Core i7 chip and 16GB RAM was employed to run our platform and used to generate the elapsed

times shown in Figure S2. We also tested our code on a virtual machine on Google Cloud Platform (GCP), utilizing a n1-highmem-8

instance with 8 vCPUs with approximately 55 GB of RAM and a 100 GB boot disk running Ubuntu 16.04. Instructions for installing

packages and dependencies can be found in the installation guide included in our GitHub repository. A full list of tested systems

is detailed in the installation guide. We note that managing package compatibility is important, and we recommend that users exer-

cise caution when changing any packages or versions. For users who feel less comfortable with package installations and/or users

with hardware that does not support TensorFlow 1.13.1 (for example, those with Macs containing M1 chips), the DockerHub repos-

itory can be easily downloaded and installed. Complete instructions for using Docker can be found in the installation guide included in

the GitHub repository. All installation methods provide Jupyter notebooks containing examples of using BioAutoMATED and the re-

sulting models for external validation, interpretation, design, and transfer learning. We also provide instructions for running

BioAutoMATED via the command line, instead of within Jupyter notebooks.

Benchmarking against automated ML tools
To compare BioAutoMATED against other AutoML tools, we performed benchmarking experiments with several available and bio-

logically focused automated ML tools, namely the iLearnPlus,49 BioAutoML,50 and JADBio51 platforms. BioNAS79 was not used in

this investigation due to installation issues [https://github.com/zj-zhang/BioNAS-pub/issues/1] that had not yet been resolved by

the time of publication of this work. While there are other platforms designed to operate and train select ML architectures for generic
Cell Systems 14, 525–542.e1–e9, June 21, 2023 e7

https://github.com/zj-zhang/BioNAS-pub/issues/1

ll
OPEN ACCESS Methods
biological sequences (e.g., pysster,61 Selene,5 BioSeq-Analysis2.0,7 etc.), these platforms do not contain specialized algorithms to

conduct automatic evaluations of multiple types of architectures and/or perform automated optimization for these models. With

these non-automated ML tools, users must still select the architecture of interest and relevant parameters. Thus, these tools are

not suitable for direct comparison with BioAutoMATED. We therefore limited our evaluation to platforms that conduct automated ar-

chitecture and hyperparameter searches for biological data. Five datasets corresponding to RBS sequences, peptides, toehold

switches, 1,000 synthetic nucleic acids (‘‘small synthetic dataset’’), and 100,000 synthetic nucleic acids (‘‘large synthetic dataset’’)

were tested using five performance metrics each: binary classification area-under-ROC curve (auROC), binary classification Mat-

thews correlation coefficient (MCC), regression R2, regression mean absolute error (MAE), and regression correlation coefficient.

First, we explored iLearnPlus,49 one of the first tools that automated ML for biological sequences (i.e., DNA, RNA, and peptides).

iLearnPlus provides a website, as well as the ability to download the code and run its interface locally on any machine. We assessed

our datasets through the latter option, as the website only accommodates up to 2,000 sequences. The user must select the feature

representation for sequences (e.g., k-mer representation, electron-ion interaction potential, etc.). To mimic a user without prior

knowledge of the best feature representations, we selected the binary feature representation for all datasets, which effectively cre-

ates a one-hot encoding for each sequence and then flattens this matrix into a one-dimensional vector. An additional hands-on step

is required, wherein a user must generate this input and then upload the input into the AutoML module. iLearnPlus49 enables 21

different ML algorithms (12 conventional ML methods, two ensemble-learning frameworks, and seven deep learning frameworks).

Again, in the spirit of mimicking the behavior of an average user interacting with the system, we selected a representative set of

four model types: (1) random forest classifiers; (2) decision trees; (3) multi-layer perceptrons or MLPs; and (4) XGBoost, and selected

the ‘‘auto-optimize’’ optionwhen offered. For all model types, we used five-fold cross validation. A user who assesses all model types

with all possible feature encodings (representing hundreds of combinations) may obtain better performance than we reported; never-

theless, it is infeasible to expect the average user to conduct these optimizations on their own. Additionally, iLearnPlus49 only accom-

modates classification, and regression tasks could not be assessed using this platform.We binarized continuous values by assigning

any sequence with a value above the median to a positive example and any sequence with a value equal to or below the median to a

negative example.

We next assessed BioAutoML,50 which has both automated feature engineering and automatedML capabilities. Like iLearnPlus,49

BioAutoML50 only works for classification tasks. Unfortunately, BioAutoML50 does not report the MCC. BioAutoML50 reports the

confusion matrix and does not report the models’ predictions on the held-out test sequences; the information provided is therefore

insufficient to calculate theMCC. Due to these limitations, BioAutoML50 was used to benchmark five out of the 25 tasks, correspond-

ing to the five auROC metrics for the binary classification tasks. Of these five tasks, we found that BioAutoML50 outperforms other

tools on the peptide dataset and performs equally well as iLearnPlus49 and BioAutoMATED for the large synthetic dataset. We note

that the feature engineering in BioAutoML50 can, in some cases, provide a compelling advantage, especially on sequences with a

higher dimensionality such as peptides. However, BioAutoML50 cannot handle non-canonical (e.g., J representing leucine/isoleu-

cine) amino acids for peptides. We therefore replaced all J amino acids with leucine, which could have affected the final set of metrics

computed. BioAutoML50 also cannot be used on a Mac; for researchers with limited computational experience who desire to

leverage the power of ML in their work, the process of setting up a virtual machine or using a different operating system to accom-

modate BioAutoML could be a barrier.

Lastly, we assessed JADBio,51 anML platform for generic biological datasets. JADBio, due to its exclusive use of vectors as input,

is the only platform we assessed that cannot handle raw nucleic acid or peptide sequences. The input for JADBio51 is restricted to

one-dimensional vectors, so we used the flattened binary representation generated by iLearnPlus. We note that other representa-

tions may have been used, but typical users may not know how to create and assess different feature representations. JADBio51

is limited to datasets of less than 100,000 sequences, so we used a smaller dataset of 50,000 ribosome binding site sequences

instead of the full set of �276,000 sequences. By default, JADBio51 only uses a select subset of features to train its ML models.

Here, we also explored the alternative option of selecting all features, which we hypothesized would result in a fairer performance

comparison. We found that JADBio51 did not achieve perfect classification or regression performance on the synthetic nucleic

acid datasets (our positive controls), and the authors of this tool report that the JADBio51 platform intentionally underestimates

the performance of its models for better generalizability projections. It is possible that, had the tool reported raw performance values,

its models may exceed those of BioAutoMATED in predictive capability; with only the values provided by JADBio,51 we cannot

currently perform this comparison. Additionally, JADBio reports ‘‘correlation coefficient’’, which we compare to our Pearson

correlation coefficient. We also note that JADBio’s interface is exceptionally easy to use, and they also provide computing power

for their users, as this tool is a commercial product. However, it is difficult to appropriately compare a commercial product with

an academic tool; some of their features, for example, some model interpretation, are hidden behind paywalls, hindering closer

investigation.

Benchmarking against pre-trained language models
Unlike language models that are trained on large datasets of nucleic acid and peptide sequences with varying sizes and unknown

functions, BioAutoMATED models must take input sequences with labelled functions of interest. Thus, for these comparisons, we

re-trained generic language models on a task-specific dataset of sequences of specific lengths; for example, we retrained a generic

DNA model on synthetic nucleic acids that are all 20 nucleotides long.
e8 Cell Systems 14, 525–542.e1–e9, June 21, 2023

ll
OPEN ACCESSMethods
First, we compared BioAutoMATED’s performance on three nucleic acid sequence datasets to the performance of DNABERT.52

DNABERT is a pre-trained language model that was trained for 25 days on eight NVIDIA 2080Ti GPUs on a massive dataset of

unbiased DNA sequences.52 DNABERT can be re-trained on user-provided data if the user specifies the training parameters, which

include the k-mer length, learning rate, weight decay, and other parameters.We performed aminimal parameter search by evaluating

pre-trained models with k-mer sizes of 3 and 6 and learning rates of 2x10-4 (provided in the example GitHub code) and 5x10-5

(the default learning rate within DNABERT’s source code). We set all other parameters as default for the fine-tuning stage: per_gpu_

eval_batch_size = 8; per_gpu_train_batch_size = 8; num_train_epochs = 3.0; warmup_percent = 0; hidden_dropout_prob = 0.1;

weight_decay = 0.0. As the early_stop parameter did not appear to effectively stop the model training regimen [https://github.

com/jerryji1993/DNABERT/issues/98], we evaluated performance of all models at the final training step.

To assess peptide sequence performance, we compared BioAutoMATEDmodels with Facebook’s ESM53model, amodel that has

been pre-trained on large-scale protein datasets. Unfortunately, ESM does not support fine-tuning of their models and reports that

they do not plan to support fine-tuning when asked to add that feature in GitHub requests (please see, for instance, https://github.

com/facebookresearch/esm/discussions/33 and https://github.com/facebookresearch/esm/issues/30). The ESM authors have

published a protein-based pre-trained model and code to calculate embeddings from this pre-trained model, which can then be

used as inputs to simple scikit-learn-based regression heads; we thus used this code to benchmark BioAutoMATED. It is possible

that fine-tuning ESMmay result in better performance on task-specific datasets, but this is currently not supported. It is also possible

that using ESM embeddings as input to more complex models may lead to higher performance, but we did not explore this option.

We compared three scikit-learn model types: K-nearest neighbors regressor, random forest regressor, and support vector ma-

chine regressor (SVR). We first compared training performance. For the scikit-learn based models, we evaluated both the three-

fold cross validation performance during training on the held-out fold, as well as on a held-out 20% test set. We compared this per-

formance to the best-performing BioAutoMATED models, which were TPOT models, and their automatically-calculated R2 values

during three-fold cross-validation training. With models trained on 100% of the data, we then evaluated the performance on the

external validation held-out test set used in Liu et al.31 As ESM embeddings do not support non-conventional amino acid encoding,

we replaced all J amino acids (indicating isoleucine or leucine) with L (leucine). After using the scripts/extract.py code with the pre-

trained esm2_t33_650M_UR50D model to extract embeddings, we utilized all defaults for training (embedding layer = 33; re-

pr_layers = 0 32 33; include_mean_per_tok).

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses are detailed in the corresponding figure legends and results section of the main text. Unless otherwise

specified, significance was set at a threshold of p < 0.005 and denoted with an asterisk. Statistical significance was computed using

scipy.stats. Randomization was performed using the Python ‘‘random’’ package.
Cell Systems 14, 525–542.e1–e9, June 21, 2023 e9

https://github.com/jerryji1993/DNABERT/issues/98
https://github.com/jerryji1993/DNABERT/issues/98
https://github.com/facebookresearch/esm/discussions/33
https://github.com/facebookresearch/esm/discussions/33
https://github.com/facebookresearch/esm/issues/30

Cell Systems, Volume 14
Supplemental information
BioAutoMATED: An end-to-end automated

machine learning tool for explanation

and design of biological sequences

Jacqueline A. Valeri, Luis R. Soenksen, Katherine M. Collins, Pradeep Ramesh, George
Cai, Rani Powers, Nicolaas M. Angenent-Mari, Diogo M. Camacho, Felix Wong, Timothy
K. Lu, and James J. Collins

SUPPLEMENTAL ITEMS

Figure S1. Data ablation experiments automatically performed with BioAutoMATED for all
model types help evaluate dataset saturation and model robustness; Related to Figure 1. (A)
DeepSwarm models on ribosome binding site sequences are data efficient. At the lowest dataset size,
DeepSwarm achieves a significantly higher Matthews Correlation Coefficient (MCC) than both TPOT
and AutoKeras, and TPOT performs better than AutoKeras. At the full dataset size, all models
perform significantly better than their respective scrambled control models. (B) DeepSwarm is
saturated on the peptide dataset while other methods can achieve higher Matthews Correlation
Coefficients (MCCs) with more training data. At the lowest dataset size, DeepSwarm outperforms
TPOT. At the full dataset size, all models perform significantly better than their respective scrambled
control models. (C) Models trained on synthetic nucleic acid sequences show the necessity of training
data for AutoKeras models, where performance drops off almost linearly with decreasing amounts of
data. At the lowest dataset size, DeepSwarm and AutoKeras both achieve a significantly higher MCC
value than TPOT. At the full dataset size, all models perform equally to their respective scrambled
control models. All data robustness experiments were performed using the best binary classification
models for each architecture search and each sequence type. For all panels, points correspond to
one of N=3 folds and asterisks indicate significance with p < 0.005 using two-sided t-tests.

Figure S2. AutoML model search time is automatically evaluated for all model types; Related
to Figure 1. The AutoML model search time alone is provided for (A) ribosome binding site
sequences, (B) peptides, (C) synthetic nucleic acid sequences, and (D) glycan sequences. For all
datasets, the DeepSwarm algorithm identifies an optimal model architecture in the shortest time.
BioAutoMATED also provides a comprehensive time breakdown for (E) ribosome binding sites, (F)
peptides, and (G) synthetic nucleic acid control sequences. For all sequence types, the most time-
intensive step in the DeepSwarm platform is sequence design. The time breakdown was not
computed for glycans because the interpretation and design modules were run separately from the
AutoML model search for glycan prediction tasks. All time calculations were computed using binary
classification models.

Figure S3. An augmentation option is available for nucleotide sequence-based datasets;
Related to Figure 1. Here, with a reduced sample of RBS sequences (N=2,000), we see that the
synthetically complemented dataset yields an AutoKeras model with a higher MCC value than the
original dataset (p < 0.005). Reverse complementation achieves a higher MCC than the original
dataset (p < 0.05) and both complementation techniques achieve a higher MCC than the original
dataset (p < 0.005). For DeepSwarm models, the reverse complementation and both
complementation techniques yield higher MCCs (p < 0.05). Asterisks indicate significance as
specified using two-sided t-tests. Points correspond to one of N=3 folds.

Figure S4. For sequences of heterogeneous lengths, BioAutoMATED employs length
standardization options; Related to Figure 1. (A) Users are provided with the options for truncation
to the shortest sequence length, padding to the longest sequence length, or truncation and padding to
the average sequence length. For an immunogenicity binary classification task on glycan sequences,
most length standardization options result in roughly equivalent model performance. For all models,
the minimum and maximum padding options result in significantly better performance for models
trained on the original sequences compared to scrambled sequences. The average padding option in
DeepSwarm models fails to significantly outperform the scrambled control models, indicating that
information about meaningful sequence patterns may be lost when averaging sequence lengths. (B)
For a multi-class phylogenetic domain classification task, models trained on maximum length
sequences appear to have the strongest performance for original sequences and poorest
performance for scrambled sequences. The TPOT models outperform DeepSwarm and AutoKeras
models and are the only AutoML search algorithm to result in significantly higher performance than
models trained on scrambled sequences for all padding options and all classes. For all panels, points
correspond to one of N=3 folds and asterisks indicate significance with p < 0.005 using two-sided t-
tests.

Figure S5: Raw sequences logos from experimental data contextualize model interpretation;
Related to Figures 2, 3, 4, and S6. Arrows signify improving sequence function, where the left end of
an arrow corresponds to the worst (or 0) class sequences, and the right end of an arrow corresponds
to the best (or 1) class sequences. Sequence logos are computed for (A) RBS sequences, (B)
peptide sequences, (C) immunogenic glycan sequences, and (D) synthetic nucleic acid sequences.
All sequence logos are computed with samples of N=50 sequences.

Figure S6. A synthetic nucleic acid control dataset benchmarks BioAutoMATED under ideal
conditions; Related to Table 1. (A) A synthetic control set of 20-nucleotide sequences was scored
according to a simple sum of their nucleotides with the arbitrary scoring regime: A = 1, T = 2, C = 3, G
= 4. Models trained on these synthetic sequences as well as scrambled sequences have equivalent
performance, serving as a successful positive control. (B) The synthetic nucleic acid dataset served
as a successful positive control for regression models trained on both original and scrambled
sequences. (C) To test the multi-class classification capabilities of BioAutoMATED, synthetic nucleic
acids were split into four quartiles and labeled as “a”, “b”, “c”, and “d” (i.e., Class 0, 1, 2, and 3,
respectively). The synthetic nucleic acid positive control was accurately classified with a multi-class
classification model for both original and scrambled sequences. For panels (A), (B), and (C), points
correspond to one of N=3 folds. (D) A saliency map of the synthetic nucleic acid model and (E) its
corresponding sequence logo validates that the adenine nucleotide, the lowest-scoring nucleotide,
receives the highest model attention for N=100 randomly selected sequences. Normalized saliency
represents arbitrary model attention units.

 Held out test set RBS
sequences from Höllerer et al.30

Held out test set peptide
sequences from Liu et al.31

Number of
positives

13,836 207

Total number in
dataset

27,654 471

R2 0.867 0.435

Pearson R 0.931 0.659

Spearman R 0.879 0.678

auROC 0.939 0.868

Matthews
Correlation
Coefficient

0.725 0.523

Table S1: The top-performing models successfully validate on external datasets; Related to
Figure 2 and Figure 3. The AutoKeras regression model trained on the ribosome binding site
sequences obtained from Höllerer et al.30 performs well on held-out test set sequences, displayed in
the first column. In the second column, the top-performing TPOT regression model trained on the Liu
et al.31 peptide dataset successfully validates on the held-out test set. To obtain the auROC and MCC
values, the target values were binarized on the median of the dataset.

 Free-trigger

toehold switch
sequences from

Green et al.47

Zika virus-sensing
toehold switch

sequences from
Pardee et al.48

Number of
positives

42 N/A – ranked list

Total number in
dataset

168 24

R2 0.108 0.097

Pearson R 0.329 0.311

Spearman R 0.337 0.307

auROC 0.725 N/A

Table S2: The top-performing toehold switch models successfully validate on external
datasets; Related to Figure 5. The top-performing AutoKeras toehold switch regression model
performs equivalently to Valeri, Collins, Ramesh, et al.29 for two external validation datasets,
respectively: the 168 gold-standard free-trigger toehold switch sequences reported in Green et al.47
and the 24 ranked toehold switches built to detect the Zika virus reported in Pardee et al.48
Performance is evaluated with R2 values, Pearson R coefficients, Spearman R coefficients, and area-
under-ROC curve (auROC).

Dataset Validation
Set

DNABERT
processing

k-
mer

auROC MCC
Bio

Auto
MATED

DNABERT Bio
Auto

MATED

DNABERT
LR

2x10-4
LR

5x10-5
LR

2x10-4
LR

5x10-5

Ribosome
binding sites
(N=275,849)

External test
set

(N=27,654)

Binarized on
median of
train set
(0.125)

k=3
0.915

0.502 0.961
0.659

0.0 0.811

k=6 0.498 0.962 0.0 0.821

Toeholds
(90%,

N=82,380)

10% test set
(N=9,154)

Binarized on
median of

dataset
(0.446)

k=3
0.894

0.499 0.932
0.648

0.0 0.738

k=6 0.503 0.932 0.0 0.740
Synthetic

nucleic acids
(90%,

N=90,000)

10% test set
(N=10,000)

Binarized on
median of

dataset (50)

k=3
1.0

0.505 1.0
1.0

0.0 1.0

k=6 0.510 1.0 0.0 0.998

Table S4: BioAutoMATED and DNABERT52 comparison on structured nucleic acid datasets;
Related to Table 1. Generic DNABERT nucleic acid models were fine-tuned on RBS, toehold, and
synthetic nucleic acid benchmark datasets as previously described. The k-mer size parameter
influences the choice of pre-trained language model and the number of nucleotides being considered
at a time by the model. Two different learning rates (LR) were evaluated: 2e-4 is the example learning
rate given by DNABERT GitHub example and 5e-5 is the default learning rate within the DNABERT
code.

Model

Cross Validation Results
(N=3 folds)

External Validation Results
(N=471 sequences)

R2 on 80%
folds during

training

R2 on 20% test
set during

training
Spearman R R2

ESM embeddings into K
Neighbors Regressor 0.527 +/- 0.031 0.128 +/- 0.065 0.664 0.411

ESM embeddings into
Random Forest Regressor 0.909 +/- 0.006 0.136 +/- 0.035 0.834 0.730

ESM embeddings into SVR 0.178 +/- 0.047 0.043 +/- 0.016 0.626 0.491

BioAutoMATED
(best performing TPOT

model)
0.425 0.678 0.434

Table S5: BioAutoMATED and ESM53 comparison on a structured peptide dataset; Related to
Table 1. Generic ESM protein models were used to generate embeddings that were then used as
input into three types of scikit-learn models. The performance of the model depends on the
architecture type.

	CELS1001_proof_v14i6.pdf
	BioAutoMATED: An end-to-end automated machine learning tool for explanation and design of biological sequences
	Introduction
	Results
	BioAutoMATED automates the development of ML models
	BioAutoMATED accommodates different data types, sizes, and processing options
	BioAutoMATED provides interpretation tools to facilitate sequence analysis and model explanation
	BioAutoMATED enables computer-aided design of biological sequences
	BioAutoMATED elucidates ribosomal binding site design for gene regulation
	BioAutoMATED enables optimization of drug-binding antibody sequences
	BioAutoMATED accurately classifies glycans according to function
	BioAutoMATED facilitates the design of toehold switches that detect nucleic acids
	BioAutoMATED outperforms other AutoML tools

	Discussion
	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Methods details
	Installation and usage of BioAutoMATED
	User inputs
	Pre-processing and data cleaning
	Architecture search
	Feature importance and in silico mutagenesis plots

	Class activation and saliency maps
	Naive design module
	Directed design module
	Transfer learning functionality
	Proof of concept with experimental data
	Scope of the platform
	Machine specifications and package environments
	Benchmarking against automated ML tools
	Benchmarking against pre-trained language models

	Quantification and statistical analysis

