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SUMMARY

To artificially reprogram cell fate, experimentalists
manipulate the gene regulatory networks (GRNs)
that maintain a cell’s phenotype. In practice, reprog-
ramming is often performed by constant overex-
pression of specific transcription factors (TFs). This
process can be unreliable and inefficient. Here, we
address this problem by introducing a new approach
to reprogramming based on mathematical analysis.
We demonstrate that reprogramming GRNs using
constant overexpression may not succeed in
general. Instead, we propose an alternative reprog-
ramming strategy: a synthetic genetic feedback
controller that dynamically steers the concentration
of a GRN’s key TFs to any desired value. The
controller works by adjusting TF expression based
on the discrepancy between desired and actual TF
concentrations. Theory predicts that this reprogram-
ming strategy is guaranteed to succeed, and its per-
formance is independent of the GRN’s structure and
parameters, provided that feedback gain is suffi-
ciently high. As a case study, we apply the controller
to a model of induced pluripotency in stem cells.

INTRODUCTION

In multistable gene regulatory networks, an individual network’s

state at any moment in time, as determined by the concentra-

tions of the network’s transcription factors (TFs), can be found,

by definition, in multiple stable steady states. According to

Waddington’s view of cell differentiation (Waddington, 1957),

each of the stable steady states of a gene regulatory network

involved with development can be associated with a different

cell phenotype and transitions between different phenotypes,

as induced by external stimuli or noise, represent cell fate deci-

sions (Wang et al., 2011). Our ability to direct or reprogram cell
Cell Systems 4, 109–120, Ja
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fate usually relies on artificially triggering specific state transi-

tions with appropriate, known artificial perturbations and stimuli

(Huang, 2009).

Overexpression of a known cocktail of TFs is a common and

experimentally practical perturbation that successfully induces

cell fate reprogramming in a number of instances (Graf and En-

ver, 2009). In these experiments, TF concentration is ‘‘preset,’’

that is, it is increased over endogenous levels by experimental

manipulations done before the experiment began and cannot

be iteratively adjusted. The success rate of methods that rely

on preset overexpression of transcription factors remains very

low across a range of prefixed overexpression reprogramming

methods (Morris and Daley, 2013; Schlaeger et al., 2015; Goh

et al., 2013; Xu et al., 2015). We suggest that this is due to the

fact that successful transitions between states using preset

overexpression of TFs depend on the natural network’s dy-

namics. Because there is no general guarantee that a given net-

work’s dynamics will allow transitions to the desired target state

under the imposed perturbations, preset overexpression may

not result in the desired outcome. For example, when the

network motif is cooperative (that is, all existing mutual regu-

latory interactions are positive) and the target state is not

maximal, achieving it will be difficult using preset overexpression

(this is demonstrated mathematically below). A method for artifi-

cially enabling transitions between stable states that does not

depend on the natural network’s dynamics would overcome

the network’s natural limitations and allow for more efficient

reprogramming.

In this paper, we address this problem by designing a general-

purpose synthetic genetic feedback controller that can steer the

concentrations of the network’s TFs to any desired target values.

This is done independently of the gene regulatory network’s

structure and parameters, provided the feedback gain is suffi-

ciently high. With our approach, the overexpression level of

TFs is not preset; instead, it is adjusted by the genetic feedback

controller based on the discrepancy between the TF’s current

concentration and its desired concentration in the target state.

Our design has two components that we will discuss in detail

and is depicted graphically in Figure S3A: a synthetic genetic

controller circuit that globally stabilizes the concentration of
nuary 25, 2017 ª 2016 The Authors. Published by Elsevier Inc. 109
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TFs to a value encoded by inducers’ levels (inner loop control)

and an in silico adjustment of the inducers’ levels performed at

steady state to decrease the discrepancy with the target TFs’

concentrations (outer loop control). In particular, the controller

implements feedback overexpression of each TF by concur-

rently realizing a large (inducible) production rate and a large

degradation rate. The net result of these two large opposing

forces is that the concentration of the TF approaches a well-

defined ‘‘proportion’’ between the (synthetically realized) pro-

duction and degradation rates, independently of the network

that also regulates the TF. Because this proportion can be

adjusted by an inducer, the inducer level uniquely dictates

the TF’s target concentration. The outer loop control measures

the concentration of the TF after it has reached the steady state

imposed by the current inducer level and compares it to the

target concentration to determine the appropriate inducer

level’s adjustment. We demonstrate the performance of this

general-purpose genetic feedback controller through mathe-

matical analysis and simulations. As predicted from theory,

simulation results show that we can trigger state transitions in

multistable gene regulatory networks in which preset overex-

pression fails.

As a case study, in the Biology Box, we discuss the potential

application of the controller to the problem of induced pluri-

potent stem cell (iPSC) reprogramming (Graf and Enver, 2009;

Takahashi and Yamanaka, 2016). In particular, we illustrate

simulation results in which the controller is employed to trigger

transitions to the intermediate pluripotent state in a two-node

network motif found in the core pluripotency gene regulatory

network. Because this network includes positive regulatory inter-

actions, steering TF concentrations to intermediate levels may

not be possible with preset overexpression if these interactions

dominate the network’s behavior. In this case, the controller

may guarantee higher success rates during iPSC reprogram-

ming. More broadly, we discuss how the controller, owing to

its unique ability to accurately steer and hold the concentrations

of TFs at inducer-encoded levels, may be employed as a dis-

covery tool for iPSC reprogramming.

RESULTS

Reprogramming of Cooperative Gene Networks through
Preset Overexpression
In this section, we motivate the need for methods that can

trigger desired state transitions in multistable gene regulatory

networks independently of their natural dynamics. We mathe-

matically describe the problem of triggering state transitions

through preset overexpression of the gene regulatory network’s

TFs and demonstrate that this approach is not guaranteed to

be successful. We use the specific example of cooperative

network motifs, wherein TFs positively regulate each other.

These motifs are of particular interest because they play a

central role in the gene regulatory networks that control plurip-

otency (Boyer et al., 2005; Jaenisch and Young, 2008; Kim

et al., 2008).

We consider ordinary differential equation (ODE) models of

gene regulatory networks with n TFs, x1., xn in which overex-

pression of TF xi is modeled as an external ‘‘input’’ ui directly

increasing the rate of production of the TF. Letting xi denote
110 Cell Systems 4, 109–120, January 25, 2017
the concentration of TF xi and letting x = (x1, ., xn) represent

the state of the network, we write:

Su :
dxi
dt

= fiðx; uiÞ; with fiðx;uiÞ= HiðxÞ
� gixi + ui; i˛f1;.; ng; (Equation 1)

in which Hi(x) is the Hill function that captures the regulation of xi
by the networks’ TFs (Del Vecchio and Murray, 2014), gi is the

constant decay rate due to dilution (cell growth) and/or degrada-

tion, and ui R 0. In the sequel, we let u = (u1,., un). When u = 0,

the system in Equation 1, referred to as S0, describes the natural

network’s dynamics without external intervention. We have ne-

glected the mRNA dynamics to simplify notation, assuming

that mRNA quickly reaches its quasi-steady state (Alon, 2007).

This assumption can be made without loss of generality, as the

analysis and results that follow hold independently of it. Within

this model, the process of reprogramming the network’s state

to a target stable state S0 can be qualitatively described as in

Figure 1A. For illustration purposes, let us assume that themodel

with no input, S0, has three stable steady states S0, S1, and S2,

although, in general, it can have many more. Because these

are stable, they each have a region of attraction such that if the

system’s state x is initialized in the region of attraction of S1 (S0

or S2, respectively), then the system’s trajectory x(t) will eventu-

ally approach S1 (S0 or S2, respectively). When a constant over-

expression rate u is applied, the landscape of steady states

changes. For reprogramming the network to S0, one would like

the perturbed system Su to have a unique globally stable steady

state S0
0 that lies in the region of attraction of S0 (center plot of

Figure 1A). In this case, sufficiently prolonged perturbation will

lead the trajectory of the system starting from any initial state

x(0) to approach S0
0. Because S0

0 lies in the region of attraction

of S0, the trajectory will ultimately converge to S0 when perturba-

tion is removed, thereby successfully reprogramming S0 to S0

(right plot of Figure 1A). In such cases where the perturbed sys-

tem has a unique stable steady state in the region of attraction of

the target state S0, we will say that the system is strongly reprog-

rammable to S0.

In the case of a cooperative network, the signs of the mutual

regulatory interactions, if present, are positive, while autoregula-

tory loops can have any sign (Figure 1B). Referring to Equation 1,

for a cooperative network we have the following properties:

(1) vfi=vuiR0 (positive perturbation): increasing the input

increases the production rate of the TFs;

(2) vHiðxÞ=vxiR0 for i s j (positive regulation): either TF i is

not regulated by TF j or it is positively regulated by it.

This also implies that vfi=vxjR0, for all i s j, leading to a

cooperative monotone system (Smith, 1995; Angeli and

Sontag, 2003).

The set of stable steady states in amonotone cooperative sys-

tem always has a maximal element, which is a stable steady

state whose components are all greater than the corresponding

components of all other stable steady states. Referring to Equa-

tion 1, the state is the tuple (x1,., xn) whose i-th component xi is

the concentration of TF xi. A stable steady state is maximal if

each concentration xi in that state is greater than the concentra-

tion xi found in another stable steady state. For example, if we



Biology Box. Application to Induced Pluripotent Stem Cell Reprogramming

The core gene regulatory network responsible for the maintenance of pluripotency in iPSCs is composed of three TFs, Oct4, Sox2, and
Nanog (pluripotency TFs), that mutually activate each other while also self-activating (Boyer et al., 2005; Jaenisch and Young, 2008;

Kim et al., 2008) (Figure B1A). This core network is embedded in a larger network that includes competitive repressions between the plu-

ripotency TFs, lineage specifiers, or growth TFs (Thomson et al., 2011; Niaken et al., 2010; Chambers et al., 2003; Niwa et al., 2005; Herberg

et al., 2014). Reprogramming somatic cells to pluripotency has been performed by overexpressing pluripotency TFs (Takahashi and Ya-
manaka, 2006) and by adding chemical stimuli in order to force higher TF concentrations found in the pluripotent state (Theunissen and

Jaenisch, 2014).

It has been proposed that an imbalance of lineage specifying TFs leads to undesirable fates, which suggests that accurate control of

these lineage specifiers is key to higher reprogramming success rates (Shu et al., 2013). Among the pluripotency TFs, Oct4 plays a primary

role in determining transitions in and out of pluripotency (Radzisheuskaya et al., 2013). Oct4 is abundant in the inner cell mass, downregu-

lated in the trophectoderm, and upregulated in the primitive endoderm (Niwa et al., 2000; Palmieri et al., 1994). Stoichiometric balancing of
overexpressed TFs substantially influences quality of iPSCs and the success rate of the process (Carey et al., 2011), which is fairly low and

shows very high latency (Hanna et al., 2009, 2010). These observations suggest a landscape of cell fates in which the pluripotent state is

associated with intermediate concentrations of Oct4, as shown in Figure B1B.

These studies indicate that accurate and timely stabilization of the concentrations of pluripotency TFs and lineage specifiers to within

desired ranges may improve the rate and decrease the latency of iPSC reprogramming. In particular, if the pluripotency network is domi-

nated by positive regulatory interactions and pluripotency is associatedwith intermediateOct4 concentrations, then low success ratesmay
be a symptomof not being able to stably reach target Oct4 concentrationswith standard open loop overexpression strategies. As such, the

controller we describe may guarantee a higher reprogramming success rate.

To illustrate this point, we consider the problemof reprogramming a simplified lumped, two-nodemodel of the pluripotency network (Fig-

ure B1A). This model focuses on Oct4 for the reasons mentioned above and on Nanog because its high concentration is characteristic of

pluripotency (Hanna et al., 2009). The model includes mutual positive regulation of Oct4 and Nanog (Boyer et al., 2005) and the effective
repression from Oct4 to Nanog that results from Oct4 activating Gata6 (mesendodermal lineage specifier) and Gata6 repressing Nanog

(Shu et al., 2013). For analysis, we consider a representative instance of this system with three stable steady states: one associated with

the trophectoderm (TR), with low concentrations of Nanog and Oct4, one associated with the primitive endoderm (PE), with low Nanog

and high Oct4 concentrations, and one associated with pluripotency (PL), with high Nanog and intermediate Oct4 concentrations (Fig-
ureB1B). In thismodel, the positive interaction fromOct4 toNanogdominates at lower concentrations ofOct4 (around the TRandPL states)

while the negative interaction dominates at higherOct4 concentrations (around the PE state). Therefore, we expect from theory that reprog-

ramming the system fromTR to PLwill require a specific intermediate range of overexpression. Because the objective of this illustration is to

assess the performance of the controller in a case where preset overexpression fails, we consider a parametrization of the two-node gene
regulatory network in which no preset overexpression level exists to reprogram the system from TR to PL (Figure B1C).

Stochastic simulations, in which feedback overexpression is implemented through the controller in Figure 3D for both TFs, show that the
network state can be steered from TR to PL and be held there despite stochastic fluctuations while the controller is on (Figure B1D). We

have captured biochemical reaction noise by using the chemical Langevin equation (CLE) model (Gillespie, 2000) (see ‘‘Stochastic Model’’

in the STAR Methods). The variance of the trajectories while the controller is acting is smaller than that resulting after the controller is shut

down,which is determined by the natural gene regulatory network’s dynamics (Figure B1D). This is expected from theory asmathematically
demonstrated for a simple model of the controller (see ‘‘High Gain and Noise in the Genetic Controller’’ in the STAR Methods).

If each stochastic realization is viewed as a single cell’s trajectory, these results suggest that the controller may decrease cell-to-cell
variability, although a number of issues regarding stochastic properties require further study. First, the simulations are based on CLEs

and therefore do not capture phenomena that become more prominent at lower molecular counts, such as stochastically induced multi-

modality, nor the observed high variability in reprogramming latency, which is the subject of intense investigation (Hanna et al., 2009). In

addition, the model used here does not include chromatin dynamics, which may substantially contribute to stochasticity and latency
observed in reprogramming experiments (Soufi et al., 2012) and challenge the standard adiabatic TF/promoter binding assumption on

which gene regulation models are based (Feng and Wang, 2012). Moreover, differences in parameter values across cells should be incor-

porated in stochasticmodels. Finally, the target stateS0 in practice corresponds to a distribution of target TF concentrations rather than to a
unique concentration (Cahan and Daley, 2013).

In the simulations of Figure B1, the inducer concentrations in the controller were set to make the target state x* close to PL (Equation 6).
From a practical standpoint, experimentalists could screen for inducer concentrations that, with the controller in place, deliver higher re-

programming success rates and then use these in reprogramming experiments. This is a simpler alternative to the outer loop feedback

adjustment of the inducer’s concentration shown in Figure S3A and discussed in ‘‘Outer Loop Feedback Control for Adjusting xi*’’ in the

STAR Methods.

Figure S3B shows that the outer loop controller steers TF concentrations through various steady-state level. If the phenotype of the cell is

dictated by the concentration of the TFs under control (Oct4 and Nanog, in this example), then all trajectories ending with the pluripotent
concentrations of these TFs will lead to pluripotency. If, instead, additional uncontrolled pluripotency TFs or lineage specifiers in the plu-

ripotency gene regulatory network are necessary to dictate the pluripotent phenotype, then these may lead the gene regulatory network to

different states depending on the path followed by the controlled TFs’ concentrations. These states, in turn, may prime cells to non-plurip-

otent lineages despite the controller completing its task and steering the reprogramming TFs under its control to the pluripotent
concentrations.

While this is a limitation, it is also a feature that may be used as a discovery tool for both uncovering minimal sets of TFs that dictate
pluripotency and for revealingwhether pathmatters during reprogramming. Such discoverability would be unique to this controller because

(Continued on next page)
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Biology Box. Continued

the intermediate states are not just taken on in passing like in preset overexpression, but rather are sustained in quasi-steady states over

time before the next step of mRNA overexpression pushes the cell to the next steady state. As a consequence, while the controlled TFs’

concentrations are held constant, the additional TFs in the gene regulatory network have time to stabilize to their corresponding concen-
trations, which may lead to various cell phenotypes that can be assessed for proximity to pluripotency through gene expression analysis.

Accordingly, incremental and sequential up-and-down steady-state perturbations to the controlled TFs may be a promising approach to

discover paths to pluripotency (if they exist) in complex steady-state landscapes (see ‘‘Discovering Paths to Pluripotency’’ in the STAR

Methods and Figures S3C and S3D).

In summary, the proposed controller has the potential to accurately and quickly steer the concentrations of prescribed TFs to target

steady-state values, independent of the endogenous network that regulates these TFs, provided the feedback gain is sufficiently high.
It could be useful in applications where one wants to trigger transitions into an existing stable target state, in which case the controller

is removed after its task is completed, thus allowing the endogenous TFs to take the concentrations in the target state. It can also be

used to stabilize a system to states different from those already present, and as such, it may be useful in metabolic engineering for dynam-
ically optimizing the yield of a product subject to toxicity constraints (Holtz and Keasling, 2010). In this case, the controller should not be

removed after task completion as its effort is required to sustain the newly achieved steady-state landscape.
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Figure B1. Reprogramming a Network Motif of the Pluripotency Gene Regulatory Network

(A) Two-node network motif with Oct4 and Nanog. Sox2 is lumped with Oct4 because these two TFs often act as a heterodimer (Tapia et al., 2015).

(B) Representative steady-state landscape with three stable steady states: trophectoderm (TR), pluripotent (PL), and primitive endoderm (PE).

(C) Bifurcation diagrams show number, location, and stability of the steady states as u1 or u2 increase.

(D) Time traces (10 realizations) of Nanog and Oct4 concentrations while the controller circuit is active (left of arrow) and after shut down (right of arrow).

Simulations using the chemical Langevin equation (see ‘‘Stochastic Model’’ in the STAR Methods). Parameters for which preset overexpression fails.
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Figure 1. Reprogramming a Multistable Network

(A) Basic idea of reprogramming a system Su to a target state S0. Colored regions represent different regions of attraction for the states shown, S0
0 represents the

unique stable steady state following perturbation, and green trace represents the system’s trajectory.

(B) Generic cooperative network. The arrowheads on edges represent positive activation and circles represent indeterminate regulation. Only three nodes shown,

but an arbitrary number can be present.
have only two stable steady states, ðxa1;.; xanÞ and ðxb1 ;.; xbnÞ,
then ðxa1;.; xanÞ is maximal if ðxai Rxbi Þ for all i˛f1;.;ng. Most

importantly, a cooperative monotone system with positive

perturbation is strongly reprogrammable only to this maximal

stable state. It follows that a cooperative network is not strongly

reprogrammable to any target state S0 that is characterized by

an intermediate value of any of the TFs concentrations xi. It is

therefore not possible to force all network’s states to the region

of attraction of an intermediate target state S0 through preset

overexpression. It may be possible, however, to reprogram the

system to S0 if the initial state is lower than it (see ‘‘Cooperative

Network Reprogramming Properties’’ in the STAR Methods).

However, whether an appropriate level of overexpression exists

and, if so, its range, depends critically on the parameters of the

Hill functions, as we illustrate in the next example.

Two-Node Cooperative Network Example

Model 1 for the case in which the cooperative network under

study has two TFs (Figure 2A) specializes to

Su :
dx1
dt

=H1ðx1; x2Þ � g1x1 + u1;
dx2
dt

=H2ðx1; x2Þ

� g2x2 + u2;Hiðx1; x2Þ= aix
2
1 +bix

2
2 + cix

2
1x

2
2

1+ x21 + x22 +dx21x
2
2

; i = 1;2;

(Equation 2)

in which we have assumed that the TFs dimerize and cooperate

before activating one another and themselves and have normal-

ized the concentrations of the TFs by their respective dissocia-

tion constants to reduce the number of parameters. The left-

side plot of Figure 2B shows a configuration of the nullclines of

system S0 in Equation 2 where u1 = u2 = 0, which possesses

three stable steady states. The plot also depicts the vector field

ððdx1=dtÞ; ðdx2=dtÞÞ, which shows stable and unstable steady

states. Based on the regions of attractions shown, for a trajec-

tory to converge to S0, it must be initialized in the pink region.

For all u1 and u2 (center and right-side plots of Figure 2B), the

perturbed system Su always has a stable steady state in the re-

gion of attraction of its maximal steady state S2 and when the

input perturbation is sufficiently large, the system has a unique

globally stable steady state in this region. Thus, under extremal

perturbation, all trajectories approach this state independently
of where they start. Furthermore, when u is set back to zero,

the trajectory will ultimately converge to the maximal state S2,

as predicted from theory. By contrast, the system cannot be re-

programmed to the intermediate state S0 even when initialized at

the steady state S1, which is lower than S0. In fact, when u1 and/

or u2 are progressively increased, the equilibrium point near S0

disappears before the one near S1 (Figure 2B). Therefore, either

the state stays around S1 for lower overexpression or it switches

to S2 for larger overexpression, leading to failure of reprogram-

ming the system to S0.

This example illustrates the theoretically predicted difficulty

encountered when reprogramming cooperative networks to a

state characterized by intermediate values of TF concentrations.

This difficulty is conceptually conveyed by the diagram of Fig-

ure 2C, in which a ball rolls down through a landscape of valleys

under the force of gravity. Let the ball initially be in the S1 valley

whenwe start pulling up the left-hand side of the landscape. If we

pull up too little, the ball will not move from the S1 valley, as this is

still a stable steady configuration (magenta plot). If we pull just

enough to make the S1 valley disappear, the ball will roll out of

the S1 valley but will not land in the S0 valley, as this valley has

also disappeared (cyan plot). That is, whenwemake theS1 valley

shallow, we also (as a side effect) make the S0 valley shallow.

Hence, the ball rolling out of S1 misses S0 regardless of the over-

expression level u that is applied.

Taken together, these findings show that in a cooperative

network, independently of the number of TFs and the number

of stable steady states, excessive overexpression is always a

losing strategy for reprogramming the network to an intermedi-

ate state. Furthermore, an overexpression level that reprograms

a cooperative network to a target intermediate state from a state

lower than it, when it exists, may be very narrow and highly

sensitive to the network’s parameters (see ‘‘Cooperative

Network Reprogramming Properties’’ in the STAR Methods).

These parameters, in turn, are poorly known and subject to

both cell-to-cell and stochastic variability over time, making it

practically difficult to appropriately set the overexpression level.

Effect of Additional Regulatory Interactions

The difficulties in reprogramming a cooperative network

through preset overexpression of its TFs continue to hold in

the presence of additional positive regulatory interactions (type
Cell Systems 4, 109–120, January 25, 2017 113
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Figure 2. Reprogramming a Cooperative Network

(A) Two-node cooperative network example.

(B) Nullclines (dx1/dt = dx2/dt = 0) and vector field for the two-node network in (A). Increasing u1 or u2 changes the shapes of the dx1/dt = 0 or dx2/dt = 0 nullclines,

respectively, such that the intersection in the red region disappears before the intersection in the blue region. Therefore, reprogramming to S0 is not possible.

Parameters are given in ‘‘Type 1 Interactions & Reprogramming Properties’’ in the STAR Methods.

(C) A ball rolling in a valley’s landscape under the force of gravity with increasing perturbation.

(D) Type 1 (positive) and type 2 (undetermined or negative) regulatory interactions act as ‘‘perturbations’’ to an n-node cooperative network.
1) or of negative/undetermined interactions (type 2), as long as

the positive ones dominate. Specifically, we make a distinction

between two types of interactions: type 1 and type 2 (Figure 2D).

In a type 1 interaction, we have a simple directed path with pos-

itive sign resulting from a cascade of activations and repressions

that starts from one of the network’s TFs and returns to a

possibly different network’s TF, in which the number of repres-

sions is even. Type 1 interactions do not change the effect of

the input perturbations (u1,.,un) on the cooperative network’s

dynamics and therefore do not alter its reprogrammability

properties (see ‘‘Type 1 Interactions & Reprogramming Prop-

erties’’ in the STAR Methods). The same difficulties exist

when attempting to trigger transitions of the network’s state

x with preset overexpression level u to a configuration where

not all network’s TF concentrations x1,.,xn are maximal. In

a type 2 interaction, the directed path that starts from one of

the network’s TFs and returns to a possibly different network’s

TF can either be simple and have negative sign or can be un-

determined. Type 2 interactions do not necessarily preserve

the monotone cooperative structure of the system and hence

may lead to different reprogramming outcomes. However, if

their effects are dominated by those of the positive regulatory

interactions, then there may not exist a preset input level u to
114 Cell Systems 4, 109–120, January 25, 2017
trigger transitions of the network’s state x to a configuration

where not all network’s TF concentrations x1,.,xn are

maximal (see ‘‘Type 2 Interactions & Reprogramming Proper-

ties’’ in the STAR Methods).

Reprogramming Gene Networks through Feedback
Overexpression
The ability to guarantee desired state transitions through combi-

nations of preset overexpression requires substantial a priori

knowledge of the network’s structure and parameters. As

shown in the previous section, no such combinations of preset

overexpression are guaranteed to exist in a cooperative network.

When insufficient knowledge of the network is available or

the network is known to contain cooperative motifs, alternative

overexpression approaches are necessary to guarantee desired

state transitions.

Therefore, given a gene regulatory network with n TFs x1,.,xn
that can each be overexpressed through stimuli u1,.,un (Equa-

tion 1), we propose an overexpression strategy that steers the

network’s state x = (x1,.,xn) to any desired state x* =

(x1*,.,xn*) independently of the network’s structure and param-

eters. This design strategy uses closed loop feedback control,

wherein each TF’s overexpression level ui, for i = 1,.,n, is



adjusted based on the error between the actual concentration xi
and the desired concentration xi*. This approach is in contrast to

open loop control, in which the system’s input u is a priori fixed at

either a constant or time-varying profile (preset) and remains un-

changed regardless of the state trajectory. In this sense, the re-

programming approach discussed in the previous section can

be regarded as an open loop control strategy.

To illustrate the effect of feedback overexpression, assume

that we can directly set ui =Giðx�i � xiÞwithGi > 0 a positive con-

stant. As xi approaches xi* the control effort ui decreases and

reaches zero when xi = xi*. If we assume that Gi is sufficiently

large such that Gixi >> Hi(x) and Gi >> gi, then Equation 1

becomes

dxi
dt

=HiðxÞ � gixi +Gi

�
x�i � xi

�
zGi

�
x�i � xi

�
; (Equation 3)

from which it follows that xi(t) will approach its unique steady

state, xi*, as t / N, independent of the regulatory interac-

tions encoded by Hi(x) (how to achieve this precise value

by appropriate setting of inducer levels is stated in Equa-

tion 6 below). More precisely, we have that limsupt/N��xiðtÞ � x�i
�� = ðHM +gix

�
i Þ=ðGi +giÞ, in which HM is an upper

bound on Hi(x). This is a form of ‘‘high-gain feedback control,’’

which has been widely used in many engineering control design

problems (Khalil, 2002). As a consequence, the larger the value

of Gi, the smaller the error between the steady state of xi and

its prescribed value xi*. Furthermore, the convergence rate of

xi(t) to xi* increases as Gi increases (see ‘‘Properties of High-

Gain Negative Feedback’’ in the STAR Methods). If for every

i˛f1;.; ng we employ ui =Giðx�i � xiÞ, then the state of the

network x(t) converges to x*. If this prescribed state is further

chosen to be inside the region of attraction of S0 and, once x(t)

has approached x*, we set ui = 0 for all i˛f1;.;ng, then x(t) ulti-

mately converges to S0. That is, the network is reprogrammed to

any desired steady state S0, independently of the network struc-

ture encoded by Hi(x), its parameters, and its initial state.

As an illustrative example, consider again the two-node

network of Figure 3A. If G1 and G2 are sufficiently large, the null-

clines dx1/dt = 0 and dx2/dt = 0 morph into the vertical line going

through x1* and the horizontal line going through x2*, respec-

tively, and intersect at the unique point x* = (x1*, x2*). Hence,

this is the globally asymptotically stable steady state of the per-

turbed system, leading all trajectories to converge to x* regard-

less of initial conditions. If x* is in the region of attraction of S0,

the trajectories will approach this state upon shutting down the

controller (u = 0), leading to reprogramming of the network to

S0 (Figure 3B).

We can qualitatively interpret the stabilizing action of the feed-

back controller as follows. Because ui = Gixi*–Gixi, this control

strategy simultaneously applies a large overexpression rate

‘‘Gixi*’’ and a similarly large degradation rate ‘‘–Gixi.’’ Qualita-

tively, the sole application of ui = Gixi* for all imakes the system’s

trajectories converge to the region of attraction of the maximal

state of S0. By contrast, the sole application of ui = –Gixi, for all

i makes the system’s trajectories converge to the region of

attraction of the minimal state of S0. The simultaneous applica-

tion of these large and opposing forcesmakes the system’s state

converge to their ‘‘proportion’’ given by x*. This interpretation is
pictorially represented in Figure 3C using the extended analogy

of a ball in a valley landscape.

Implementation of Feedback Overexpression of TF xi
through a Synthetic Genetic Controller Circuit
We implement the high-gain negative feedback overexpression

of xi by simultaneously producing and degrading the mRNA of

TF xi (Figure 3D). In particular, production is achieved by placing

a synthetic copy of gene xi under the control of an inducible

promoter with inducer Ii,1. Degradation of mRNA can be accom-

plished using a small interfering RNA (siRNA), denoted si, with

perfect complementarity to both the endogenous and the

synthetic mRNA (Carthew and Sontheimer, 2009). The siRNA

transcript is induced by Ii,2 and is encoded along with the syn-

thetic copy of gene xi on the same DNA. Here, we demonstrate

how this circuit steers the total concentration of xi to a prescribed

value xi* by using a simple one-step reaction model for the action

of siRNA. We then provide simulation results for a more realistic

two-step reaction model, discussed in ‘‘Synthetic Feedback

Controller Circuit’’ in the STAR Methods.

Referring to the circuit diagram in Figure 3D,we let the inducers

activate the target genes through functions hi,j(,), whose specific

form is usually of the Michaelis-Menten type (Del Vecchio and

Murray, 2014) and is not relevant for the current treatment as

long as hi,j(0) = 0. We refer to mi
s and mi

e as the synthetic and

endogenousmRNAs of gene xi, with xi
s and xi

e referring to the re-

sulting proteins, respectively. Because the synthetically encoded

gene is identical to the endogenous one, they effectively encode

the samemRNAs and proteins and thereforemi =mi
e +mi

s and xi
= xi

e + xi
s (withmi and xi referring to themRNA and protein of gene

xi). Keeping track of endogenous and synthetic species sepa-

rately, we can write the reactions of the system as

reactions affecting endogenous species:

[/
HiðxÞ

me
i ;m

e
i/

di
[;me

i + si/
ki

si;m
e
i/

ki
xei ; x

e
i/

gi
[;

and reactions affecting synthetic species:

[/
Dhi;1ðIi;1Þ

ms
i ;m

s
i/

di
[;ms

i +si/
ki

si;m
s
i/

ki
xsi ;x

s
i/

gi
[

[/
Dhi;2ðIi;2Þ

si;si/
bi
[:

With di and gi, we model decay of mRNA and protein, respec-

tively, due to dilution and degradation, while with bi, we model

dilution due to cell growth. Because siRNA is stable, we assume

it is only affected by dilution (Carthew and Sontheimer, 2009). Let

ai = hi;2ðIi;2Þ and assume that siRNA is induced sufficiently earlier

than the mRNA species so that its concentration reaches a prox-

imity of the equilibrium s�i =Dai=bi by the time the mRNA species

are expressed. This assumption simplifies the analysis, but the

stability properties of the system hold independent of this simpli-

fication. The ODE model describing the endogenous and syn-

thetic species’ concentrations becomes

dme
i

dt
=HiðxÞ � dme

i � kis
�
i m

e
i ;

dxei
dt

= kim
e
i � gix

e
i ; (Equation 4)

dms
i

dt
=Dhi;1ðIi;1Þ � dms

i � kis
�
i m

s
i ;

dxsi
dt

= kim
s
i � gix

s
i ;

(Equation 5)
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Figure 3. Reprogramming Gene Regulatory Network via Feedback Overexpression

(A) Two-node cooperative network with feedback overexpression of TFs.

(B) High-gain feedback makes the network monostable at the target state x*, located in the pink region of attraction of target state S0.

(C) Pictorial representation of the effect of high-gain negative feedback input on a valley landscape (compare to Figure 1E).

(D) Synthetic genetic controller circuit that implements feedback overexpression of TF xi. Species xi
e, mi

e, xi
s, mi

s represent endogenous TF andmRNA, synthetic

TF, and mRNA, respectively. Ii,1 and Ii,2 are inducers, and si is siRNA targeting mi
e and mi

s.

(E) Time traces of total TF concentrations x1 and x2 (corresponding to the network of A), where each TF is controlled by a copy of the circuit in (D).

(F) Trajectories in (x1,x2) plane corresponding to time traces of (E) and nullclines of network in (A). Parameters equivalent to those of Figure 1 (listed in Table S1), for

which it is not possible to transition to S0 with preset overexpression.
in which D is the concentration of the circuit’s DNA and

HiðxÞ= ðdi=kiÞHiðxÞ, with Hi(x) being the Hill function introduced

previously when mRNA dynamics were assumed at their

quasi-steady state.

Let xi* be the prescribed concentration to which we want to

steer TF xi and let m�
i = ðgi=kiÞx�i be its corresponding steady
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state mRNA concentration. Then, using inducer concentration

I�i;1 such that

ki

gi

bihi;1

�
I�i;1
�

kiai

= x�i 0I�i;1 = h�1
i;1

�
x�i
gikiai

kibi

�
; (Equation 6)



and adding the left and right-hand sides of Equations 4 and 5, we

obtain the ODEs for the total species concentrations:

dmi

dt
=HiðxÞ � dimi +Gi

�
m�

i �mi

�
;

dxi
dt

= kimi � gixi; Gi =D
kiai

bi

:

(Equation 7)

It follows from this that if Gi is sufficiently large such that

Gimi* >> HiðxÞ and Gi >> di, then we have that ðdmi=dtÞz
Giðm�

i �miÞ; and therefore mi(t) / mi* and xi(t) / xi* as t / N,

leading to convergence of the total TF’s concentration xi to the

prescribed value xi*. Concurrently, the endogenous TF concentra-

tion xi
e(t) approaches a small value, due to enhanced degradation

by the siRNA (Equation 4), while the synthetic TF’s concentration

xi
s(t) approaches the proximity of the prescribed value xi* (Equa-

tion 5). Thus, the net effect of the synthetic genetic circuit is to

bring the total concentration of the TF xi to xi* by supplying this

concentrationwith the synthetically producedTF and concurrently

degrading the endogenously produced TF. Note that a major

difference with the ideal feedback overexpression model in

Equation 3 is that the negative feedback is applied to the mRNA’s

concentration and not to the TF’s concentration directly. There-

fore, while we can substantially speed up the transcription pro-

cess with increasedGi, the translation speed remains unchanged.

These results remain qualitatively unchanged if a more realistic

two-step reaction model for the siRNA reaction is considered

(Haley and Zamore, 2004; Cuccato et al., 2011):

mk
i + si #

ai

di
ck
i /

ki
si; ck

i /
bi
[; k˛fe; sg;

which leads to the new ODE model for the total concentrations

mi and xi:

dsi
dt

=Dhi;2ðIi;2Þ � bisi � aimisi + ðdi + kiÞci;

dci

dt
= aimisi � ðdi + kiÞci � bici

dmi

dt
=HiðxÞ � dimi +Dhi;1ðIi;1Þ � aimisi +dici;

dxi
dt

= kimi � gixi:

(Equation 8)

This system can be taken to a form similar to Equation 7 using

quasi-steady state approximations of the enzymatic reactions

along with the assumption mi << KM, with KM = (di + ki)/ai the

Michaelis-Menten constant of the siRNA reaction. This inequality

is satisfied for physiologically relevant values of the mRNA con-

centration (Haley and Zamore, 2004) and therefore through the

operation of the controller if overexpression of mRNA is applied

sufficiently after siRNA has been overexpressed. Accordingly,

the level of the inducer I�i;1 that results in the prescribed concen-

tration x�i and the expression of the gainGi are the same as those

in Equations 6 and 7, respectively, in which ki = ki/KM. Therefore,

we will have that miðtÞ/m�
i and xiðtÞ/x�i as t / N, as before

(see ‘‘Synthetic Feedback Controller Circuit’’ in the STAR

Methods).

In summary, the requirements for the controller to steer the

concentration xi to its prescribed value xi* are: (1) Gi >> di and

Gimi* [HiðxÞ (large gain), and (2) mi << KM (mRNA does not

saturate the siRNA). While the second requirement can be easily

guaranteed by keeping the mRNA’s concentration within physi-
ological ranges, the first requirement must be engineered in the

controller by having a sufficiently large DNA copy number D

(expression of Gi in Equation 7). In ‘‘Synthetic Genetic Feedback

Controller Circuit’’ in the STAR Methods, we estimate that a few

copies of synthetic circuit DNA D suffices to realize a large gain

Gi, based on physiological values of mRNA concentrations and

decay rates in mammalian cells. When requirements (1) and (2)

are ensured, the specific values of the species concentration

are not relevant for the proper functioning of the controller, and

thus we have used arbitrary units for the simulations.

Figure 3E shows simulation results for the system in Equa-

tion 8 with i ˛ {1,2} for the case in which TFs x1 and x2 of the

two-node gene regulatory network of Figure 3A are each being

controlled by a copy of the controller of Figure 3D. The specific

parameters chosen for the gene regulatory network are the

same as those of Figure 2B, in which preset overexpression

failed to reprogram the system to S0 in all cases. In the simula-

tions, the controller is active during the time interval marked by

the yellow area in Figure 3E. During this time, the controller

quickly steers the TFs’ concentrations to their prescribed

values x1* and x2*, as expected from theory. The impact of

decreasing Gi on the circuit’s performance is illustrated in Fig-

ure S2A. In addition, Figure S2B shows that the controller cir-

cuit successfully steers x1 and x2 to the prescribed values

even when the initial state of the network (m(0),x(0)), with

m = (m1, m2) and x = (x1, x2), is in the region of attraction of

the highest stable state S2 (that was impossible to escape

from with preset overexpression). This is expected from theory

given that the controller can steer the network to the prescribed

state independently of the initial condition.

Reprogramming Gene Networks with the Synthetic
Genetic Controller Circuit
Let S0 = ðmS0 ; xS0 Þ be the target stable steady state of the endog-
enous network

dmi

dt
=HiðxÞ � dimi;

dxi
dt

= kimi � gixi; i = 1;.;n; (Equation 9)

where xS0

i is the concentration of TF xi in S0 and mS0

i = ðgi=kiÞxS0

i

is the corresponding mRNA concentration. We implement the

synthetic genetic circuit of Figure 3D for each of the network’s

TFs xi and select the prescribed value xi* so that the resulting

network state (m*, x*) is in the region of attraction of the target

state S0 and possibly close to it. Therefore, Equation 9 is modi-

fied to the closed loop system in Equation 8 for i ˛ {1,., n}. By

the results of the previous section, the genetic circuit steers

the total concentrations mi and xi to mi* and xi*, respectively,

for all i e {1,., n}, by supplyingmi
s and xi

s while actively degrad-

ing the endogenous mRNA. Because the genetic circuit holds x

at x*, the endogenousmRNAs are produced at a rate determined

by the Hill functions evaluated at x*, that is, Hiðx�Þ (Equation 4).

These production rates, in turn, are close to what we have in

the target stable state S0 because x* is close to xS0. This fact al-

lows the endogenous system to take over the synthetic circuit

and to supply the TFs’ concentrations found in S0 once the

controller is shut down.

We can mathematically formulate this behavior as follows. As-

sume that the controller can be shut down instantaneously, that
Cell Systems 4, 109–120, January 25, 2017 117



is, we can set Ii,1 = Ii,2 = si = ci = 0 for all i ˛ {1,., n} in Equation 8

(‘‘Feedback Controller Shutdown’’ in the STAR Methods ana-

lyzes the case where si and ci take time to decay). This leads

to new ODEs for the total species concentration:

dmi

dt
=HiðxÞ � dimi;

dxi
dt

= kimi

� gixi; with mið0Þ=m�
i ; xið0Þ= x�i ; i = 1;.; n: (Equation 10)

Because the initial condition (m*, x*) of this system is in the

region of attraction of the target state S0, we have that

xðtÞ/xS0 as t / N. The ODE model of the synthetic species

concentrations is given by

dmi

dt
=HiðxÞ � dimi;

dxsi
dt

= kim
s
i

� gix
s
i ; with ms

i ð0Þzm�
i ; xsi ð0Þzx�i ; i = 1;.;n;

leading to xsi ðtÞ/0 as t / N. Because xi
e(t) = xi(t) � xi

s(t), we

must have that xi
e(t) / xi(t) as t / N. This implies that

xei ðtÞ/xS0

i as t/N for all i˛ {1,., n}. That is, the endogenously

produced TFs compensate for the decaying concentrations of

the synthetic TFs and ultimately ‘‘lock’’ into the concentration

found in the target state S0. This is shown in the simulation re-

sults of Figure 3E, in which the controller is shut down at the

time indicated by the second arrow. The system simulated after

the shutdown is in Equations S1, S2, S3, S4, S5, S6, and S7, in

which we have included siRNA sponges to speed up the removal

of siRNA upon setting Ii,1 = Ii,2 = 0 for each i.

In the simulations, the endogenous network is the two-node

gene regulatory network of Figure 3A. The parameters of the

Hill functions HiðxÞ for i ˛ {1,2} are such that open loop overex-

pression fails to trigger transitions into S0 (see Figure 2B). Both

the total concentrations x1 and x2 and the endogenous concen-

trations x1
e and x2

e are shown. By the end of the time marked

by the yellow shaded area, x1(t) and x2(t) have reached their

prescribed values x1* and x2*, selected in the proximity of xS0

1

and xS0

2 , respectively. At this time, we set Ii,1 = 0 and Ii,2 = 0

for i ˛ {1,2} and overexpress the sponges. The plots show

that the total TFs’ concentration, after a transient decrease

due to the initial presence of siRNA, converge to the target

values xS0

1 and xS0

2 . In particular, after the controller is shut

down, the endogenous species concentration x1
e and x2

e

converge to the total concentrations x1 and x2, and finally to

the values characterizing the target state S0. The correspond-

ing trajectories in the (x1, x2) plane during the entire process

are illustrated in Figure 3F superimposed to the nullclines of

the endogenous network.

In summary, the controlled network is a monostable system in

which the enforced unique stable steady state has TFs concen-

trations x1* and x2* prescribed by the inducers I1,1* and I2,1* in

Equation 6. Once the controlled network’s state has reached

the prescribed concentrations of the TFs, the controller is shut

down by setting the inducer levels back to zero (and by adding

sponges if required to speed up the process). Therefore, the syn-

thetic TFs concentrations x1
s and x2

s decay to zero while the

endogenous ones x1
e and x2

e reach the total TFs’ concentrations

x1 and x2, which are, in turn, approaching their concentrations in

the target state S0, leading to reprogramming the endogenous

network to S0.
118 Cell Systems 4, 109–120, January 25, 2017
DISCUSSION

Using preset overexpression levels of TFs to trigger desired tran-

sitions in multistable gene regulatory networks is an experimen-

tally convenient approach. However, its efficacy heavily relies on

the specific dynamical properties of the network. In particular,

when the gene regulatory network is cooperative, we have

shown that preset overexpression of TFs may be insufficient to

trigger certain state transitions. To tackle this problem, we

have proposed a synthetic genetic controller circuit that imple-

ments feedback overexpression of the network’s TFs, wherein

the expression level is adjusted based on the discrepancy be-

tween the actual and desired TF’s concentration. This genetic

circuit has the capability to steer the concentration of the

controlled TFs to any desired value, independently of the net-

work’s structure and parameters, provided the feedback gain

is sufficiently high. When applied to control all of the network’s

TFs, this approach allows for the triggering of arbitrary state tran-

sitions in any multistable gene regulatory network.

A number of practical considerations are relevant for imple-

mentation of the controller in living cells. First, the high gain con-

ditions assumed throughout must be satisfied, for example

through a sufficiently high copy number of the DNA carrying

the controller components. Because our calculations suggest

that a copy number equal to 1 should be sufficient, inte-

grating approaches using lentiviral transfection (Warlich et al.,

2011) could realize the high-gain condition. In applications

where genomic integration is undesirable, alternative delivery

mechanisms may be considered such as Epstein-Barr-derived

episomal vectors that replicate atmost once per cell cycle (Yates

and Guan, 1991). In this case, the effects of copy number vari-

ability on the controller performance should be investigated.

The second condition to ensure is that the mRNA of the species

under control does not saturate the siRNA, that is, mi remains

small compared to the Michaelis-Menten constant of the siRNA

binding reaction (mi << KM) a constraint that should generally be

satisfied in physiological conditions (Haley and Zamore, 2004).

Finally, for cell fate reprogramming, it is important that upon

controller shutdown, the controller species are removed suffi-

ciently fast to avoid destabilizing the target state reached (see

‘‘Synthetic Feedback Controller Circuit’’ in the STAR Methods).

The high-gain feedback control strategy that we have pro-

posed is one possibility for robust set point control. Other op-

tions include integral feedback, as proposed in Briat et al.

(2016a) for certain classes of systems. However, such integral

feedback designs assume that species do not dilute (i.e., no

cell growth), making them better suited for reconstituted cell-

free systems (an elegant realization of this has been proposed

in Briat et al., [2016b]). Interestingly, the mathematical formula-

tion of integral control of Briat et al. (2016a) requires that the

‘‘control input’’ on the target’s equation is an additive positive

perturbation, leading to the same shortcomings as preset over-

expression for the gene regulatory network reprogramming

problem of this paper.

The blueprint of the controller we have presented, which is

capable of robust stabilization of TF concentrations in endoge-

nous gene regulatory networks is a new synthetic biology design

to the best of our knowledge. Furthermore, while the inner/outer

loop control scheme we have proposed is common in many



engineering applications to decouple the control of different vari-

ables (Murray, 2008), its biological realization is novel in synthetic

biology. This nested-loop control scheme may prove valuable in

complementing in silico feedback control approaches and, more

generally, may serve applications where accurate tuning of TFs’

steady state concentrations is of interest.
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METHOD DETAILS

Cooperative Network Reprogramming Properties
We consider a system

P
u in the form _x = fðx;uÞ with x˛X =Rn

+ and u˛U3Rm
+ a constant input vector. Let S be the set of all stable

steady states of _x = fðx;0Þ, which we refer to as system
P

0. Let S˛S be one of the stable steady states. We let the flow of system
P

starting from x0 with input u be denoted by fuðt; x0Þ and we will write f0ðt; x0Þ for the flow of system
P

0. Accordingly, we let RuðSÞ
denote the region of attraction, or basin of attraction, of a stable steady state S for system

P
u. That is, x0˛RuðSÞ implies that

limt/Nfuðt; x0Þ=S. Also, we assume that for all x0˛X; u˛U, the omega-limit set uuðx0Þ is finite.

Definition 1.We say that system
P

u is strongly reprogrammable to a steady state S˛S provided there is an input u˛U such that for

all x0˛Rn
+ the omega-limit set uuðx0Þ is such that uuðx0Þ3R0ðSÞ.

From this definition, it follows that, starting from any initial condition x0, after a sufficiently long application of control input u, upon

removal of such an input, that is, upon setting u = 0, the trajectory of
P

u approaches S. Qualitatively, this means that independent of

the initial steady state in which system
P

u is found, we can force the state to transition to the stable steady state S by a sufficiently

long presentation and then removal of a suitable input. In this paper, we seek to determine conditions under which system
P

u is

reprogrammable to a steady state S˛S.
In order to proceed, we assume that system

P
u is amonotone system. There are two reasons for this assumption: first, many of the

biological networks for which the reprogramming question is important aremonotone; second, monotonicity allows for strong results

about when a system is reprogrammable to a steady state given the rich geometrical properties of the system’s trajectories.

Definition 2. Let the state space X be equippedwith a partial order relation ‘‘%’’ (Davey and Priestley, 2002). A system
P

u ismono-

tone provided x0 % x00fuðt; x0Þ%fuðt; x0Þ for all tR0 and for all u˛U.
In the sequel, we consider the partial order established by component-wise ordering. That is, for all x; y˛X we have x%y if and only

if xi%yi for all i.

Assumption 1. System
P

u is monotone with component-wise partial order relation ‘‘%.’’ Additionally, the system is cooperative,

that is, vfiðx;uÞ=vxjR0 for isj and for all x˛X;u˛U.
Note that a cooperative system is necessarily monotone with ordering on the state space established component-wise (Smith,

1995). To keep the exposition of the theory simple, we chose the component-wise ordering. However, the results provided here natu-

rally extend to any arbitrary partial order established according to a cone. Before giving the main results, we first provide some in-

termediate properties of the geometry of the stable steady states in a monotone dynamical system.

Proposition 1. Under Assumption 1, the set of stable steady states S has a maximum and a minimum.

Proof. Let x be any element of X such that xRS for all S˛S and let us examine u0ðxÞ. Since u0ðxÞ is bounded and the system is also

cooperative, we have by Proposition 2.1 in (Smith, 1995) thatu0ðxÞ is an equilibrium, which in turn is an element of S. Let y˛S be such

an equilibrium. Since S%x for each element S˛S, it must be by the monotonicity property that S%u0ðxÞ, which, in turn, implies that

S%y for all S˛S. Therefore, y = supðSÞ and since y˛Swe have that y =maxðSÞ. Hence, S has amaximum. A similar proof holds for the

minimum. -

Now, we can state the first result. For a matrix M, we write MR0 when Mi;jR0 for all i; j.

Theorem 1. For system
P

u assume that ðvfðx; uÞ=vuÞR0 for all x˛X;u˛U (positive perturbation) and let Assumption 1 hold. Then,

system
P

u is not strongly reprogrammable to any SsmaxðSÞ.
Proof. First, we show that for all u> 0 system _x = fðx; uÞ always admits a stable steady state x such that xRS for all S˛S. Using a

similar approach as used in Nikolaev and Sontag (2016), we can consider the extended system

_x = fðx; uÞ; _u= 0
Cell Systems 4, 109–120.e1–e11, January 25, 2017 e1
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which is also monotone with order on U established component-wise. Consider two trajectories starting from the two initial condi-

tions ðx0; u0Þ%ðx0; u0Þ given by x0 = x00 =maxðSÞ and u0 = 0, u00 > 0. Since ðx0;0Þ is a steady state of the above system, by the mono-

tonicity property we have that x0%fu00 ðt; x00 Þ for all t. Hence we have that in system x = fðx; u00 Þ, uu00 ðmaxðSÞÞ is greater than maxðSÞ
itself. In turn, consider _x = fðx;0Þ and an initial condition zRmaxðSÞ. By the monotonicity property, we have that u0ðzÞRmaxðSÞ.
Since there is no equilibrium of _x = fðx; 0Þ in the cone fx j xRmaxðSÞg and by Proposition 2.1 in (Smith, 1995) u0ðxÞ is an equilibrium,

we must have that u0ðzÞ=maxðSÞ. We conclude that for
P

u with u> 0 there is x0 such that uuðx0Þ˛R0ðmaxðSÞÞ, thereforePu cannot

be reprogrammed to any of the steady states in S that are different from the maximal one.

This result indicates that in a monotone (cooperative) system with only positive stimuli, it is not possible to strongly reprogram the

system to any of the stable states that are not maximal. -

Lemma 1. Consider system
P

u satisfying Assumption 1 with fiðx;uiÞ=HiðxÞ+ ui � gixi, 0%HiðxÞ%HiM for all x˛X, and ε<ε�. Then,
limt/NxiðtÞRmaxS˛SðSÞ independent of the initial condition.

Proof. Consider the system with u= 0 given by _xi = fiðx;0Þ=HiðxÞ � gixi for all i˛f1;/; ng. Here, we can view HiðxÞ as a bounded

disturbance and can therefore apply the robustness result from contraction theory (Del Vecchio and Slotine, 2013) to obtain that

xiðtÞ%Ae�gt
i + ðHiM=gtÞ for some positive A depending on the initial condition. Letting xi : = limt/NxiðtÞ, we have that, xi%ðHiM=giÞ.

Since xi is an unspecified equilibrium point of
P

0, we have, in particular, that maxðSiÞ%ðHiM=giÞ.
Now, consider the pair of systems:

_zi = ui � gizi;
_~xi =Hið~xÞ � gi~xi + ui;

in which we can view the first system as a nominal system and the second system as its perturbed version with disturbance Hið~xÞ,
which is globally bounded by HiM. Hence, we can apply again the robustness result from contraction theory to obtain

lim
t/N

����~xðtÞ � ui

gi

����%HiM

gi

Letting ε : =HiM=ui and re-arranging the terms, we obtain that limt/N~xðtÞ � ðui=giÞð1� εÞ. Since for uiR2HiM, we have that

ðui=giÞð1� εÞRðHiM=giÞ, we also have that limt/N~xðtÞRmaxðSiÞ. -
Lemma 2. Assume that system

P
u satisfies Assumption 1 and that it is in the following form: _xi = fiðx; uiÞ=HiðxÞ � gix + ui with

ui e R+ and 0%HiðxÞ%HiM for all x˛X. Then, if uiR2HiM for all i˛f1;.;ng, then u0ðx0ÞRmaxðSÞ for all x0˛X.
Proof. By using Lemma 1, for system

P
u with uiR2HiM for all i we have that limt/NxiðtÞRmaxS˛SðSiÞ for all i independent of the

initial condition. Since this is true for any initial condition xð0Þ= x0, we have that uuðx0ÞRmaxðSÞ for all x0˛X. -
Theorem 2. Assume that system

P
u satisfies Assumption 1 and that it is in the following form: _xi = fiðx; uiÞ=HiðxÞ � gix + ui with

ui˛R+ and 0%HiðxÞ%HiM for all x˛X. Then, system
P

u is strongly reprogrammable to S if and only if S=maxðSÞ. In particular, a suf-

ficiently large input will reprogram
P

u to maxðSÞ.
Proof. It follows from Theorem 1 and Lemma 2. -

Strong reprogrammability of the system to S requires that all possible initial conditions can be steered to the region of attraction of

S for some constant input u. The system is not strongly reprogrammable to any intermediate state because initial conditions that are

greater than themaximal element of S will be kept in the region of attraction of this maximal element independent of the input chosen.

We therefore investigate whether a weaker reprogrammability to an intermediate state S holds, in which some initial condition not in

the region of attraction of S can be steered to the region of attraction of Swith constant input perturbation. We thus give the following

definition.

Definition 3.We say that system
P

u isweakly reprogrammable from steady state S˛S to a steady state S˛S with SsS provided

there is an input u˛U such that the omega-limit set uuðSÞ is such that uuðSÞ3R0ðSÞ.
The following result shows that if S>S, then the system cannot be weakly reprogrammed from S to S.

Proposition 2. Let S;S˛S and let S<S. Then, system
P

u is not weakly reprogrammable from S to S.

Proof. Systems
P

u and
P

0 are both monotone cooperative systems with fðx;0Þ%fðx;uÞ. It follows from Theorem VI (page 94 of

Walter [1964]) that f0ðt;SÞ%fuðt;SÞ for all t. Also, we have that f0ðt;SÞ=S. Therefore, we have that p : =uuðSÞRS. Since pRS, we

have that f0ðt;pÞRS for all t. This implies that u0ðpÞRS, and therefore that p is not in the region of attraction of S since S<S.

The last result shows that if S<S but the input is either too large or too small, the trajectory of
P

u will not approach the region of

attraction of S.

Proposition 3. Let S;S˛S and let S<S. There are inputs u1 and u2 such that if u%u1 or u%u2, then
P

u is not weakly reprogram-

mable from S to S.

Proof. Consider
P

u with u small. Since S is a stable equilibrium for
P

0, it follows that vfðx; uÞ=vx j
S;0

is Hurwitz and hence non-

singular. Since it is a continuous function of u and x, it follows from the implicit function theorem that there is an open ball B3U about

u= 0 such that xðuÞ is a locally unique solution to fðx;uÞ= 0 for u˛B; furthermore xðuÞ is a continuous function of u. Therefore, for small

u, we will have that xðuÞ is close to S. We can thus pick u small enough such that xðuÞ is in the region of attraction of S. Also, we have

that xðuÞRS for the monotonicity property of the systems
P

0 and
P

u. Therefore a trajectory fuðt;SÞwill asymptotically reach a point

p that is always smaller than xðuÞ and hence in the region of attraction of S. Therefore, there is an input u1 > 0 sufficiently small such

that if u%u1 the system is not reprogrammed from S to S.
e2 Cell Systems 4, 109–120.e1–e11, January 25, 2017



Consider
P

u with u large. The fact that there is u2 sufficiently large such that if uRu2 the system is not reprogrammed from S to S

follows from Lemma 2.

This result implies that system
P

u with u%u1 or u%u2 is not weakly reprogrammable to any intermediate state S˛S from the min-

imum of S. In other words, the systemmay be reprogrammed to the intermediate steady state S from theminimum one only if u takes

values in an intermediate range ½u1;u2�, which, however, may be empty since we may have u2 <u1.

Two-node example.

The parameters corresponding to the nullclines of Figure 2B are given by: a1 = 0.276, b1 = 1.38, c1 = 0:897, a2 = 0.00828, b2 = 0.0828,

c2 = 0.092, d = 1, g1 = 0:138, and g2 = 0:046. The values of u1 are: 0.0041, 0.017, and 0.0025. The values of u2 are: 0.00085, 0.00027,

and 0.0041.

Figure S1 illustrates a case where overexpression values exist to reprogram the network from S1 to S0 Only initial conditions

belonging to the green shaded area in Figure S1 lead to trajectories approaching S0’, while any other initial condition will lead to tra-

jectories approaching the top-right steady state. After these trajectories have reached their corresponding steady states, removal of

the stimulus (Figure S1, right-side) leads the trajectories initiated in the green area to approach S0, while the others approach S2.

Type 1 Interactions and Reprogramming Properties
In this section, we demonstrate that the addition of a Type 1 interaction to a monotone cooperative network keeps the extended

network monotone and cooperative in possibly new coordinates for the variables of the added interactions.

Specifically, let y˛Rm represent the vector of concentrations of additional species added to the original network. The full system is

now given by

_y =gðy; xÞ; _x = ~fðx; y; uÞ; with ~fðx; 0; uÞ= fðx;uÞ:
Consider any two nodes xj and xk and consider a path xj/yj1/./yjp/xk such that

vgj1

vxj
;
vgj2

vxj1
;.

vgjp

vxjp�1

;
v~fk
vyjp

are all not identically zero. Consider the restricted system in which the y dynamics take as ‘‘input’’ only xj through only the interaction

xj/yj1 and the x dynamics take as input only yjp through only the interaction yjp/xk . The dynamics of this system are given by:

_y�ji
= g�jiðy;0Þ; _yji = gjiðy; ð0;.; xj;.0ÞÞ; _x�k = ~f�kðx; 0; uÞ; _xk = ~fk

�
x;
�
0;.; yjp;.0

�
;u
�
; (Equation S1)

in which for a vector v, we have denoted by vk its kth component and by v�k the vector v with the kth component removed. In the

sequel, for a vector v and a diagonal matrix with entries the vector’s coordinates M=diagðvÞ we denote by M�i the n� 13n� 1 di-

agonal matrix given by diagðm�1Þ.
We now consider interactions that do not change the monotone cooperative structure of the system. To this end, we make the

following simplifying assumption.

Assumption 2. For system (SI-1), we assume that each yji in the path xj/yj1/./yjp/xk has only one parent and only one child,

that is, the path is simple.

_yj1 =gj1

�
yj1; ð0;.; xj;.;0Þ

�
;.; _yji +1

=gji +1

�
yji; 0

�
; i%p� 1; _xk = ~fk

�
x;
�
0;.; yip;.0

��
; (Equation S2)

and

_y� = g�ðy�;0Þ;
in which y� is the vector ywith the components yj1;.; yjp removed. We now give the following definition of a Type 1 interaction. LetL

be a diagonal matrix with diagonal entries li˛f�1;1g. We then give the following definition.

Definition 4. The simple path xj/yj1/./yjp/xk is a Type 1 interaction provided there is aL such that system (Equations S1 and

S2) in the new coordinates y =Ly is a cooperative monotone system.

This definition implies that a Type 1 interaction extends the original x system to the larger system (given by Equation S2) that in the

new coordinates y =Ly becomes

_yj1 = lj1gj1

�
lj1yj1; ð0;.; xj;.;0Þ

�
;. _yji + 1

= lji + 1
gji +1

�
lj1yj1;0

�
; i%p� 1; _xk = ~fk

�
x;
�
0;.ljpyjp;.0

��
; (Equation S3)

which is still monotone and cooperative with the component-wise order x%x05xi%xi0 ci according to which the isolated x system is

also cooperative. It follows that this system is also not strongly reprogrammable to the intermediate state PL and may be weakly re-

programmable to it from a lower steady state, such as TR, for some range of inputs.

With these premises, we can provide a check for when a simple path is a Type 1 interaction.

Proposition 4. Consider system (SI-2). If the condition

vgj1

vxj
,
vgj2

vyj1
,
vgjp

vyjp�1

,
v~fk
vyjp

R0 (Equation S4)
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is satisfied, then the path is a Type 1 interaction.

Proof. It is sufficient to prove that there are lj1;.; ljp that each take value in f�1;1g such that

vgj1

vxj
lj1R0;

vgj2

vyj1
lj1lj2R0;.;

vgjp

vyjp�1

ljp�1
ljpR0; and

v~fk
vyjp

ljpR0:

This, in turn is the case if and only if we have

lj1 = sign

�
vgj1

vxj

�
; lj2 = sign

 
vgj1

vxj

vgj2

vyj1

!
;.; ljp = sign

 
vgj1

vxj

vgj2

vyj1
,.,

vgjp

vyjp�1

!
;

and

ljp = sign

 
v~fk
vyjp

!
:

This set of equations has a solution if and only if

sign

 
v~fk
vyjp

!
= sign

 
vgj1

vxj

vgj2

vyj1
,.,

vgjp

vyjp�1

!
;

which is, in turn true by the assumed condition (Equation S4).

Wewill refer to a simple path where condition (Equation S4) is satisfied as a positive interaction. Wewill refer to a simple path where

condition (Equation S4) is not satisfied as a negative interaction. In this case, by the same argument as those in the above proof, the

system (Equation S2) does not admit a coordinate change L such that the system in the new coordinates is monotone and cooper-

ative. If the path is not simple, the left-hand side of (Equation S4) loses meaning and we will refer to these paths as undetermined

interactions. We will refer to negative or undetermined interactions as Type 2 interactions.

Type 2 Interactions and Reprogramming Properties
Given a monotone system Su of the cooperative type

Su : _x = fðx;uÞ; fiðx; uÞ=HiðxÞ � gi + ui; i˛f1;.;ng
as before with a set of partially ordered stable steady states for Su given by Su = fS1

u;.;Sm
u g, in which we assume without loss of

generality that S1
u is the minimum and Sm

u is the maximum. We now consider an undetermined perturbation to this dynamics as

follows:

Sε

u : _x = fðx; uÞ+EdðxÞ; ε>0; kdðxÞ k%dM;c x

in which dðxÞ is a bounded perturbation that captures the effect of unmodeled interactions. Here, we assume that all functions are

smooth. We also assume that the omega-limit set of any initial condition of Sε

u is a steady state.

Here, we seek to demonstrate that if ε is sufficiently small, then we still have the reprogramming properties of Su. Namely, the sys-

tem is not strongly reprogrammable to any stable steady state different from the continuation of Sm
0 with ε>0 small. Furthermore, the

system is not weakly reprogrammable from the continuation of S1
0 to any steady state that is the continuation of an intermediate

steady state of S0 with inputs that are either too large or too small.

The following theorem shows that for ε small enough, the stable steady states of Sε

u lie within an ε ball around the stable steady

states of Su.

Lemma 3. There is ε
�>0, smooth functions g1

uðεÞ;.;gm
u ðεÞ, and c>0 such that for ε< ε

� we have

(i) kgi
uðεÞ � Si

u k%cε;

(ii) x =gi
uðεÞ is a stable steady state for Sε

u for any i.

Proof. Let us call Fðx; εÞ : = fðx;uÞ+ εdðxÞ such that Fðx;0Þ= fðx; uÞ. Since Fð,; ,Þ is a smooth function of its arguments and

ðvF=vxÞ j ðSi
u ;0Þ is Hurwitz (because Si

u is a locally asymptotically stable equilibrium point), by the implicit function theorem there is

ε
�
1>0 and a locally unique smooth function gi

uðεÞ, such that Fðgi
uðεÞ; εÞ= 0 for all ε<ε�1. Also, ðdgi

u=dεÞ= ðvF=vxÞ�1ðvF=vεÞ. Let c be

the supremum over ε˛½0; ε� with ε<ε�1 of kðdgi
u=dεÞ k , then kgi

uðεÞ � gi
uð0Þ k%c,ε which leads to (i). The fact that x =gi

uðεÞ is a steady

state of Sε

u follows from the fact that Fðgi
uðεÞ; εÞ= 0 for all ε<ε�. The fact that it is stable follows from the following argument. Define the

matrix gðεÞ= ðvF=vxÞ j ðgi
uðεÞ;εÞ. By the problem definition, we have that the eigenvalues of gð0Þ all have strictly negative real parts. Since

g is a smooth function of ε and the roots of the characteristic polynomial of g depend continuously on its coefficients, there is ε0 such
that gðεÞ has eigenvalues with strictly negative real part for all ε<ε0. Therefore, (ii) follows with ε

� =minfε0; ε�1g. -
In the sequel, we assume that ε is small enough such that this Lemma holds and also such that the balls BcεðSi

uÞ for i˛f1;.;mg are
disjoint. Such an ε exists because the steady states in Su are isolated.
e4 Cell Systems 4, 109–120.e1–e11, January 25, 2017



Lemma 4. Let xðt; xoÞ denote the trajectory of Sε

u : _x = fðx;uÞ+ εdðxÞ, let wðt;woÞ denote the trajectory of SM
u : _w= fðw; uÞ+ εdM,

and let vðt; voÞ denote the trajectory of ~Su : _x = fðx;uÞ � εdM starting from initial conditions vo%xo%wo. Then, we have that

vðt; voÞ%xðt; xoÞ%wðt;woÞ for all tR0.

Proof. The result follows directly from Theorem VI (page 94 of Walter [1964]) applied to the pairs _x; fðx;uÞ and _x; fðx;uÞ � εdM, in

which the vector fields fðx;uÞ and fðx; uÞ � εdM are each quasi-monotone according to the definition in Walter (1964). -

This result says that the trajectories of Sε

u are always comprised between those of ~Su and those of SM
u .

Consider the set of stable steady states of ~Su. For ε sufficiently small, the same arguments as those in Lemma 3 applied toSε

u apply

and therefore this set will be given by ~S: f ~S1

u;.; ~S
m

u g, in which ~S
i

u lies within a ball with radius proportional to ε centered at Si
u. Also,

since ~Su is monotone and cooperative, we have that the set of stable steady states has a maximum and a minimum. Without loss of

generality, let ~S
m

u be the maximum and ~S
1

u be the minimum. Then, we have the following Lemma.

Lemma 5. Let xo be the initial condition of Sε

u. If xoR
~S
m

u , then uε

uðxoÞR ~S
m

u .

Proof. By Lemma 4, we have that if vo = xo then vðt; voÞ%xðt; xoÞ for all tR0. This inequality continues to be true asymptotically, and

therefore, we must also have that uε

uðxoÞRlimt/Nvðt; voÞ. In turn, since system ~Su is monotone and cooperative and voR ~S
m

u , then we

must have that limt/Nvðt; voÞ= ~S
m

u , leading to the desired result. -

This lemma implies that Sε

u for any u>0 has a steady state that is greater than ~S
m

0 (since ~S
m

u is greater than any of the stable steady

states ~S
i

0 by the monotonicity property along with positive perturbation).

Theorem 3. System Sε

u is not strongly reprogrammable to any stable steady state of Sε

0 different from gm
0 ðεÞ.

Proof. By Lemma 5, any u>0 for Sε

u will result for xoR ~S
m

u in a stable steady state that is greater than ~S
m

u and hence of ~S
m

0 since ~S
m

u is

greater than any of the stable steady states ~S
i

0 by themonotonicity property along with positive perturbation. A trajectory xðt; xoÞ ofSε

0

that starts with xoR ~S
m

0 will be such that (by Lemma 5) uε

uðxoÞR ~S
m

0 . It will therefore converge to a stable steady state of Sε

0 that is

greater than or equal to ~S
m

0 . By Lemma 3, the only such steady state is gm
0 ðεÞ. Since there are always initial conditions that give

rise to trajectories approaching the region of attraction of gm
0 ðεÞ, it follows that the system is not strongly reprogrammable to any other

stable steady state. -

Theorem 4. There are u1;u2>0 such that if u%u1 or uRu2 then Sε

u is not weakly reprogrammable from g1
0ðεÞ to any gi

0ðεÞ for ism.

Proof. From Lemma 2 with HiðxÞ re-defined as HiðxÞ+ εdiðxÞ, we have that for all xo, the trajectory of Sε

u with uiR2HiM for all i will

result into uuðxoÞR ~S
m

0 . As a consequence, uuðxoÞ˛R0ðgm
0 ðεÞÞ for all xo and in particular for xo =g1

0ðεÞ. Reversely, if u is too small, by

continuity arguments xo =g1
0ðεÞ will approach a steady state that still lies in the region of attraction of g1

0ðεÞ. -

Properties of High-Gain Negative Feedback
Consider the ODE (3):

_xi =HiðxÞ � gixi +Gi

�
x�i � xi

�
;

in which jHiðxÞ j%HM for all x. Now consider the error e= xi � x�i and re-write the above dynamics in error coordinates:

_e=HiðxÞ � gix
�
i � eðGi +giÞ:

In this system HiðxÞ � gix
�
i can be viewed as a bounded disturbance such that

��HiðxÞ � gix
�
i

��%HM +gix
�
i . Since this system is con-

tracting with contraction rate Gi +gi, we can use the robustness result from contraction theory (Del Vecchio and Slotine, 2013) to

conclude that

��xiðtÞ � x�i
��%C1e

�Gt
i +

Hm +gix
�
i

Gi +gi

;

leading to a faster convergence rate as Gi increases and ultimately leading to

limsupt/N

��xiðtÞ � x�i
��%Hm +gix

�
i

Gi +gi

:

Synthetic Feedback Controller Circuit
Consider theODEmodel in Equation 8. Exploiting the fact that the association and dissociation reactions in an enzymatic reaction are

much faster than the catalytic reaction (Del Vecchio andMurray, 2014), we can re-write the system in the slow variables si = si + ci and

mi =mi + ci and approximate the complex ci to its quasi-steady state

ci = si
mi=Km

1+mi=Km

; Km = ðdi + kiÞ=ai;

in which Km is the Michaelis-Menten constant of the mRNA/sRNA reaction. This leads to the new set of ODEs

_si =Dhi;2ðIi;2Þ � bisi; _mi =HiðxÞ � dimi � kisi
mi=Km

1+mi=Km

+Dhi;1ðIi;1Þ; _xi = kimi � gixi;

in which, we have made the approximation bi = ki, since dilution is typically much slower than catalytic reactions (Del Vecchio and

Murray, 2014). From Haley and Zamore (2004), it is known thatmi � Km for physiologically relevant values of mRNA concentration.
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Also, with the synthetic genetic controller, we expect to keep the mRNA concentration within physiologically relevant values through

the entire control operation since overexpression is applied concurrently with enhanced mRNA degradation. As a consequence, we

can simplify the above system to

_si =Dhi;2ðIi;2Þ � bisi; _mi =HiðxÞ � dimi � kisi
Km

mi +Dhi;1ðIi;1Þ; _xi = kimi � gixi; (Equation S5)

in which, assuming that si has already reached its steady state given by Dai=bi, we can set

Gi =
ki
Km

Dai

bi

; m�
i =

hi;1ðIi;1Þ
ai

Kmbi

ki
: (Equation S6)

Therefore, the above system finally becomes

_mi =HiðxÞ � dimi +Gi

�
m�

i �mi

�
; _xi = kimi � gixi;

which has the same form as the system in Equation 7 in the main text, in which a one-step reaction was assumed. This leads to the

same conclusion: we have a globally asymptotically stable system with unique equilibrium point given by

m�
i =

hi;1ðIi;1Þ
ai

Kmbi

ki
; x�i =

kim
�
i

gi

for Gi sufficiently large.

Parameter feasibility analysis and numerical simulations.

Weperform a feasibility study to determine what DNA concentrationsD need to be used in order to ensure sufficiently largeGi, that is,

Gi [di and Gimi [HiðxÞ, in which the expression of Gi is given in Equation S6. This is the only requirement for the control design to

stabilize the concentration xi to the prescribed value xi*. From the half-lives of TFs’ mRNA, such as Nanog and Oct4, we can estimate

di˛½0:09; 0:17� hr–1 (Sharova et al., 2009). Also, from the in vitro study of Haley and Zamore (2004), we know that for completely

complementary siRNA we can obtain kiz61 hr–1. We can estimate the maximal promoter induction, ai = hi;2ðIi;2Þ, using the typical

transcription initiation rate in mammalian cells. The initiation rate for transcription in mammalian cells was estimated to be about

0:0216 s–1, but only 8.6% of RNAP that arrive at the initiation step are estimated to result in an mRNA molecule product (Darzacq

et al., 2007). Therefore, we take an effective transcription initiation rate of 0.0018 s–1, or equivalently ai = 6:7 hr–1 for a maximally

induced promoter. Considering that dilution rate is about biz0:05 hr–1, corresponding to a doubling time of 20 hr (Milo et al.,

2010), in the worst case scenario when Km = 1 nM the gain is given by

GizD
61,6:7

1,0:05
= 8; 174D:

Requesting that GiR10di with di = 0:17 hr �dimi then leads to

DR0:0002 nM4D copy numberR1:

Similarly, we can find the copy number of D needed tomakeGimi[HiðxÞ. To this end, we estimate themaximal value ofHiðxÞ from
the maximal rate of transcription used above, ai = 6:7 hr–1, and from the fact that this should be multiplied by the concentration of

DNA. Since the endogenous system is on the chromosome, which is in one copy, it has a concentration of 0:4,10�3 nM (Milo

et al., 2010), so that we estimate an upper bound of HiðxÞ given by siðmi=KmÞ=ð1+pi=KdÞ. Given that mRNA levels of proteins in

mammalian cells have a median of about 17 molecules per cell (Schwanh€ausser et al., 2011), we can use for our estimates mi*
z

0.02 nM. Since from the above calculations we have Gi z 8,174D, it is therefore sufficient to have

8;174D,0:006R10,2:68,103/DR5:4,104 nM

which is guaranteed if D is at least in one copy. Based on these calculations, with a few copies of the synthetic genetic circuit, we will

be able to realize a sufficiently high gain Gi, which leads to stabilizing the concentration xi to the prescribed value xi*.

Provided Gi [di, Gimi*[HiðxÞ; andmi � KM, the specific concentrations of the species are not relevant to the functioning of the

synthetic genetic controller circuit. Therefore, we considered arbitrary units (AU) of concentration in the simulations. Units of time,

instead, were considered in hours in order to provide information about the speed at which the synthetic genetic controller can steer

the TF concentrations to their prescribed values. The simulation parameter values are in Table S1.

Figure S2A shows the effect of decreasing the gain Gi (by decreasing the circuit DNA D copy number) on the controller perfor-

mance. As D is decreased, the steady state reached by x1 and x2 starts deviating from the prescribed concentrations x1* and x2*

and the time to reach steady state substantially increases.

Feedback Controller Shutdown

When the controller is shut down, that is, when Ii,1 and Ii,2 for i e {1,2} are set back to zero, si(t) does not reach zero immediately. Before

si(t) reaches zero it can, in principle, push the state of the system out of the region of attraction of S0 and hence it is desirable to speed

up its removal. In order to resolve this potential problem, upon setting Ii,1 = 0 and Ii,2 = 0 for i e {1,2}, we also induce mRNA sponge pi
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(through inducer Ii,3) for i e {1,2} that quickly sequesters the siRNA from its targets mi
s and mi

e (Jens and Rajewsky, 2015; Ebert et al.,

2007). We model the sponging effect by sequestration wherein the sponge reversibly binds with its siRNA target. Specifically,

we have:

pi + si#
~ai

~di

cpi; Kd =
~di

~ai
; cpi/

bi
[:

Assuming a decay rate ~di for the sponge pi, we have that system (Equation 8) after setting the inducers to zero, that is Ii,1 = Ii,2 = 0,

and inducing the sponges, transforms into

_si = � bisi; sið0Þ=
Dhi;2ðIi;2Þ

bi

; _ci = aimisi � ðdi + k1Þci � bici

_mi =HiðxÞ � dimi � aimisi +dici; _xi = kimi � gixi;

_pi =Dhi;3ðIi;3Þ � ~dipi � ~aipisi + ~dicpi; _cpi = ~aipisi � ~dicpi � bicpi; si = si � ci � cpi;

(Equation S7)

in whichD is the concentration of the DNAwhere the sponge is encoded and hi;3ð,Þ is the inducer regulation function. This set of ODEs

models the dynamics of the system after the controller is shut down. For this system, we canmathematically determine conditions on

key parameters, such as the DNA copy number D, such that the speed of siRNA removal is sufficiently fast to ensure that ðmðtÞ; xðtÞÞ
will remain in the region of attraction ofS0 during the shutdown process, leading ðmðtÞ; xðtÞÞ, and thus ðmeðtÞ; xeðtÞÞ, to converge toS0.

To this end, we reduce this system to the slow variable dynamics by setting the complex dynamics to the quasi-steady state and

re-writing the system in the slow variables mi =mi + ci and pi =pi + cpi
:

_si = � bisi; _ci = si
mi=Km

1+pi=Kd

; cpi = si
pi=Kd

1+pi=Kd

_mi =HiðxÞ � dimi � kici; _pi = ~Dhi;3ðIi;3Þ � ~dipi � bicpi;

(Equation S8)

in which we have used the relations bi � ki andmi/KM � 1 as before. For this system, we seek to determine how large Dmust be to

guarantee that _ci = siðmi=KmÞ=ð1+pi=KdÞ in the _mi equation becomes sufficiently small in a short time such that it becomes negli-

gible. Specifically, we request that by the time TðεÞ at which miðtÞ has decreased by e x 100% with respect to m�
i , the term �kici

has become negligible compared to �dimi. If this is the case and ε is sufficiently small, at time T the state of the system 0:4,10�3

will still be in the region of attraction of S0 and since siðmi=KmÞ=ð1+pi=KdÞ can be neglected, the mi dynamics (and hence those

of the full system) are approximately the same as those of the original system without feedback controller. Since S0 is stable for

this system and the state at time T is in its region of attraction, the state will ultimately converge to S0.

First, we find a lower bound for TðεÞ from analyzing the dynamics ofmi. To this end, since _mi = _mi + _ci, vci=vpi%0, vci=vsiR0, and
_piR0, we have that _mið1+ vci=vmiÞR _mi. Since vci=vmi%si=Km and _miR� dimi � kiðsi=KmÞmi, we finally have that

_miR�Gimi; mið0Þ=m�
i ;

in which we have used di � Gi. From this, it follows that miðtÞRmið0Þe�Git and therefore that miðtÞRð1� εÞmið0Þ as long as

t%
1

Gi

ln

�
1

1� ε

�
= TðεÞ:

Second, we determine for what values of the copy numberD, we can guarantee that kiciðtÞ%0:1dimi for all tRT, so that the term kici
can be neglected with respect to dimi after this time. To this end, consider that siðtÞ= e�bi tsið0Þ with sið0Þ= ðDai=biÞ, so that

kiciðtÞ= ki
Km

e�bi t
Dai

bi

mi

1+pi=Kd

; Gi =
kiDai

Kmbi

:

It is therefore sufficient to request that

Gie
�bi t

1

1+piðtÞ=Kd

%0:1di;ctRT : (Equation S9)

To determine when this is the case, we analyze the _pi dynamics and determine the smallest value that piðtÞ takes for tRT. From
_pi = _pi + _cpi

, with vcpi
=vpi = ðsi=KmÞð1=ð1+p1=KdÞ2Þ, and using the expressions for _si and _pi in Equation 11, we finally obtain

_pi =
�
~Dhi;3ðIi;3Þ � ~dipi

� 1

1+ ðsi=KmÞ
.
ð1+pi=KdÞ2

!
:

From this, employing differential inequalities, we obtain that

piðtÞRDhi;3ðIi;3Þ
~di

�
1� e�lt

�
; l=

~di
1+ ðsið0Þ=KmÞ:
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For ε sufficiently small, we can use Taylor expansion of TðεÞ to obtain that Tzε=ðGið1� εÞÞ. Letting hi;3ðIi;3Þ=ai as performed for the

siRNA expression rate, we therefore have that

piðtÞRDai

~di

�
lε

Gið1� εÞ
�
;ctR0:

Substituting this expression into the left-hand side of Equation 11, we finally obtain

Dai

Kd

εR10
G2

i

di

�
1+

sið0Þ
Km

�
:

Here, we consider Kdz0:004 nM, which corresponds to one among the smallest values given by thermodynamic estimates (Jens

and Rajewsky, 2015). Using e= 0.1, Gi = 10di (D = 0.0002 nM) as before, sið0Þ=Dai=bi, di = d2 = 0:09 hr–1, it is sufficient to have

Dz0:54 nM, corresponding to a DNA copy number of about 230. This number can be easily increased by increasing the number

of sequences per DNA copy transcribed (Jens and Rajewsky, 2015).

Outer Loop Feedback Control for Adjusting xi*
The inducers’ concentrations uniquely determine the prescribed concentrations xi* according to Equation 6. Setting the inducers’

concentrations to Ii,1*may be difficult in practice because the parameters involved in Equation 6, even if they pertain to the synthetic

genetic controller circuit, may not be exactly known. To overcome this problem, we consider a steady state feedback adjustment of

the inducer level (Figure S3A). Specifically, the inducer levels are initialized based on a reasonable guess and then are iteratively

adjusted based on the proximity of the resulting reached steady state xi * to the target concentration xi
S0. Since the measurement

of xi occurs only after this has reached its steady state xi *, the measurement does not need to occur in real-time. In fact, the

controller’s effort ‘‘freezes’’ the network TFs’ concentrations xi at xi * until the controller circuit’s inducer levels are updated, thus al-

lowing sufficient time for measurements to take place. Letting T be the time it takes for xi (t) to reach the proximity of xi * and letting k

denote a natural number, we can set the inducer level at time t = (k+1)T based on its value at time kT and on the discrepancy between

xi
S0 and xi *. This leads to the feedback law

Ii;1ððk + 1ÞTÞ= Ii;1ðkTÞ+Ki

�
xS0
i � xiðkTÞ

�
; k˛N ; (Equation 11)

in which xi(kT)zxi* with x�i = ðki=giÞðbihi;1ðIi;1ðkTÞÞ=kiaiÞ. The comparison xS0

i � xiðkTÞ can be performed in a computer and the in-

ducers can be adjusted via in silico computation as proposed by other works (Milias-Argeitis et al., 2011). In contrast to these pre-

vious studies, however, the inducer adjustment does not take place in real-time and instead takes place only after the concentration

xi(t) has reached the proximity of its steady state value xi*, allowing for time consuming concentration quantifications to take place. A

strategy where the network is directly controlled by an in silico controller would not necessarily guarantee stabilization of the TF’s

concentrations xi to their prescribed values xi* due to delay-induced instabilities, as documented by other works (Menolascina

et al., 2014). The presence of the stabilizing action of the high-gain synthetic genetic controller circuit overcomes this problem. Fig-

ure S3B reports simulation results with the two-node endogenous gene regulatory network of Figure 3A for different values of the

coefficients K1, K2, showing that the system reaches a proximity of the target concentrations xS0 . The choice of K1 and K2 affects

the speed of convergence to the target state. Specifically, larger values lead to faster convergence but also to larger overshoot

and may, when too large, compromise the stability of the inducer update law in Equation 11. More sophisticated inducer update

laws may consider adaptive ways of setting the constants Ki through, for example, the use of gradient descent algorithms with nu-

merical estimation of the gradient (Nocedal and Wright, 2000) or techniques such as extremum seeking control (Ariyur and

Krstic, 2003).

Discovering Paths to Pluripotency
Here, we illustrate how the ability to accurately set and hold any TF’s concentration to a prescribed value, which we can do with our

controller circuit, can be employed as a way to discover paths to reprogramming. To this end, we consider the case in which we con-

trol only a subset of the TFs of the pluripotency gene regulatory network. If this subset alone is sufficient to dictate the pluripotent

state, then setting the concentrations of the TFs in this set to their pluripotent values will reprogram the network to pluripotency. If

the TFs alone are not sufficient to dictate the pluripotent state, we can still leverage the ability to accurately set and hold their con-

centrations at prescribed values as illustrated in the following simple example.

Assume that the gene regulatory network that we want to reprogram has two TFs and that we can overexpress only one of them.

The same reasoning follows if the network has many more TFs and we can overexpress a subset of them, but the graphical illustra-

tions become cumbersome. Let the two TFs be denoted by x1 and x2 in which we are allowed to overexpress only x2. As a concrete

example, we can think of x1 as being Nanog and x2 as being Oct4, and model an experiment in which we seek to reprogram the

network to PL by accurate control of Oct4 only. The network model is given by

X
u

: _x1 =
a1x

2
1 +b1x

2
2 + c1x

2
1x

2
2

1+ x21 + x22 + x21x
2
2 + ex42

� g1x1; _x2 =
a2x

2
1 +b2x

2
2 + c2x

2
1x

2
2

1+ x21 + x22 + x21x
2
2

� g2x2 + u2 (Equation S10)
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For a representative parameter choice leading to three stable steady states (PL, PE, and TR), the nullclines and vector field for

u2 = 0 are given in Figure S3C, in which we have highlighted in red the target pluripotent state (PL). If we apply u2 =G2ðx�2 � x2Þ
with G2 sufficiently large while u1 = 0, the controller guarantees that x2ðtÞ is steered toward x�2 while the steady state value that

x1ðtÞ reaches depends on the shape of the _x1 = 0 nullcline (Figure S3D). If the concentration of x2 alone were sufficient to determine

the PL state, then, referring to Figure S3D, the horizontal line with x�2 = 2 passing through PL would have only one stable intersection

with the black nullcline. In the plot shown, instead, it has two stable intersections, one at PL and one at a point denoted by x1 closer to

the initial condition x(0). Thus, setting x�2 = a will result into a trajectory that approaches x1 (light blue) instead of PL. However, if we

keep increasing the prescribed value x�2 in small steps, we will eventually drive the state of the system to x2 and then to x3. At this

point, we can set the prescribed value back to x�2 = a and the state will converge to PL. This is an example in which progressively

setting x�2 to a, then to b, then to c, and then back to a gives a different outcome for the system’s state x from setting x�2 directly

to a. In this case, the chosen sequence of steady state concentrations for the TF that we can control determines the end state of

the network. This example also shows that progressive increase and then decrease of the prescribed concentrations x�i of the

TFs that we can control may be a promising approach to find a path to reprogramming if one exists.

High Gain and Noise in the Genetic Controller
Considering the simple ODE model of the total species concentrations mi and xi with the synthetic genetic controller in Equation 7,

which for Gi sufficiently large becomes

dmi

dt
=Gi

�
m�

i �mi

�
;

dxi
dt

= kimi � gimi:

Here, we seek to mathematically demonstrate on this simple model that increased gainGi in the feedback controller decreases the

coefficient of variation of xi. To this end, we consider the corresponding Chemical Langevin Equation (CLE) to the above system

given by

dmi

dt
=Gi

�
m�

i �mi

�
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gim�

i +Gimim
p

Gm;
dmi

dt
= kimi � gixi +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kimi � gixi

p
Gx;

in which Gm and gx are realizations of white noise processes. Since the system has linear propensities, the moments equations are

closed and therefore we will use them to obtain the variance and the mean of xi. These equations are given by

dE½mi�
dt

=Gi

�
m�

i � E½mi�
�
;

dE½xi�
dt

= kiE½mi� � giE½xi�

dE


m2

i

�
dt

=GiE½mi�
�
1+ 2m�

i

�
+Gim

�
i � 2GiE



m2
�
;

dE


x2i
�

dt
= 2kiE½mixi� � 2giE



x2i
�
+ kiE½mi�+giE½xi�;

E½mixi�
dt

=Gim
�
i E½xi� � E½mixi�ðgi +GiÞ+ kiE



m2

i

�
:

Setting these to the steady state, and calculating the steady state variance of mi and xi, we obtain

VarðmiÞ=m�
i ; VarðxiÞ=m�

i ki

gi

�
1+

ki

Gi +gi

�

leading to the following coefficients of variation:

CVm>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðmiÞ

p
E½mi� =

1ffiffiffiffiffiffi
m�

i

p CVx>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðxiÞ

p
E½xi� =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1+ ki

Gi +gi

�r
ffiffiffiffiffiffiffi
m�

i
ki

gi

q
From the expression ofCVx, we conclude that asGi is increased the coefficient of variation of xi decreases. Furthermore, since the

gain Gi does not affect the mean value of xi, increased Gi will simply reduce the variance of xi.

Stochastic Model
Stochastic differential equation (SDE) models for the endogenous pluripotency circuit of Oct4 andNanog aswell as the controller and

its shutdown via sponge mRNAs were constructed from the reactions surrounding Nanog and Oct4 promoter regulation. Reaction

channels for processes such asmRNA translation, siRNA-mRNA interaction and species dilution and degradation were explicitly ac-

counted for as well (Table S2). Noise in all these processes was captured by employing the Chemical Langevin Equation (CLE) for

describing the dynamic behavior of molecular species and their associated reaction channels taking place in a well-stirred reaction

volume U (Gillespie, 2000). Each reaction channel j was assigned a propensity function aj to govern the rate of its procession; for

unimolecular reactions of the form X/
k

Y, the propensity function is a function of the number of molecules of X: aj = k, X while

for bimolecular reactions of the form X + Y/
k

Z, the propensity function is aj = ðk=UÞ, XY (Del Vecchio and Murray, 2014),
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Endogenous Network

The endogenous network of Figure B1A was modeled with the following 15 dynamic variables: transcription factor dimers N2 (rep-

resenting Nanog-Nanog) (Wang et al., 2008; Mullin et al., 2008) and O2 (representing Oct4-Sox2) (Tapia et al., 2015), transcription

factors N and O (Nanog and Oct4, respectively), their mRNA precursors mN and mO free Nanog and Oct4 DNA promoters DN and

DO, single-bound promoters DNO, DON, DNN, DOO (where Dij represents the dimer of species j bound to promoter of species i), dou-

ble-bound promoters DNNO, DONO (where Dijk represents the dimer of species k bound to the single-bound promoter Dij), and DX, the

transcriptionally inactive form of Nanog promoter being repressed by an Oct4 dimer. The reaction channels pertaining to these vari-

ables are listed in Table S2A.

Controller

The downregulatory function of the controller is modeled by the inducible transcription (through inducer Ii,2, whose activation is

modeled with the Hill function h(Ii,2) as in Results section entitled: ‘‘Implementation of feedback overexpression of TF xi through a

synthetic genetic controller circuit’’) of siRNA strands for the species sN and sO fromDNAwith copy number Dcn andDco, respectively.

The siRNA species sN and sO bind to and degrade the mRNA species mN and mO respectively, forming the intermediate complexes

cN and cO along their degradation pathways. Additionally, the upregulatory function of the controller is modeled with the inducible

transcription (through inducer Ii,1 activatingwith theHill function h(Ii,1)) of the TF genes for Nanog andOct4 onDNAwith copy numbers

Dcn and Dco. The reaction channels pertaining to these controller variables are listed in Table S2B.

Sponge mRNA for Controller Shutdown

Shutdown of the controller is modeled with inducible transcription (through inducer Ii,3 whose activation is modeled with the Hill func-

tion h(Ii,3) as in the STARMethods subsection entitled ‘‘Feedback Controller Shutdown’’ above) of sponge mRNA species pN and pO,

which bind to and sequester the siRNA species sN and sO, respectively. Along this sequestration pathway, the intermediate com-

plexes cp,N and cp,O are formed. The reaction channels pertaining to these sponge mRNA species are listed in Table S2C.

Overexpression in the endogenous circuit is represented by a birth process for O andN at time-constant rates uN and uO. These are

represented through the reaction channels in Table S2D.

Chemical Langevin Equations

From the reaction channels listed in Table S2 for the 23 species of the collective endogenous, controller, and sponge mRNA mole-

cules described above, the CLE listed in full in Data S1 (Document S1) was constructed.

In these SDEs, the terms Gj represent the white noise associated with reaction channel j. The endogenous circuit (Figure B1A) is

realized by setting the inducers on the controller and sponge to h(Ii,1) = h(Ii,2) = h(Ii,3) = 0 for i efN;Og. Realizations of the controller

circuit (Figure B1D) that steers the system’s state to the arbitrary unit values of ðN�;O�Þ = (184,25) were obtained by setting the in-

ducers h(Ii,1)hhi;1 and h(Ii,2)hhi;2 for i efN;Og in the model above to the nonzero levels listed in Table S3. Note that h(Ii,1) is set as a

function of this target state as obtained from the results of the STAR Methods subsection entitled ‘‘Synthetic Genetic Feedback

Controller Circuit’’: hðIi;1Þ= ðX�
i ,gi,hðIi;2Þ,ksiÞ=ðki,Kmi,biÞ. By the same token, h(Ii,2) is arbitrarily set in accordance with the design

of the controller as first an siRNA saturating device followed by the right level of synthetic mRNA upregulation to achieve the target

state. Shutdown of the controller with the spongemRNAwas realized by again setting h(Ii,1) = h(Ii,2) = 0while also setting h(Ii,3)h hi,3 to

the values in Table S3.

The Euler-MarayumaMethod (Kloeden and Platen, 1992) was implemented using MATLAB R2015b to obtain approximate numer-

ical solutions to the respective system of SDEs in the realization of these circuits. The parameters used are listed in Tables S1 and S3,

with U= 101:9. The Gj terms for each channel were computed using a discretized Wiener process for timestep

dt : Gj =Nð0;1=dtÞ= ffiffiffiffiffi
dt

p
,Nð0;1Þ, whereNð0; 1Þ is the normal distribution and is sampled inMATLAB using the pseudorandom gener-

ator function randn.

Fixed Overexpression and Stochastic Transitions

It is possible to re-design the deterministic landscape of Figure B1B such that there is a chance that fixed overexpression leads to

reprogramming from the TR state to the PL state. With parameters as given in Figure S4, the deterministic landscape allows for

choices of u1 and u2 that cause the TR state to disappear before the PL state, thus enabling a TR to PL state transition. Figure S4

shows realizations of the Chemical Langevin Equation model in Data S1 (Document S2), derived from the endogenous reactions

detailed in Table S2A, and parameters as shown. From the figure, it appears that while successful transitions fromTR to PL is possible

via fixed overexpression, the weak stability of the PL state under overexpression causes noise to eventually push the state out of the

PL basin of attraction. This is in contrast to the controller, which enforces the prescribed concentrations as long as it is kept on.

Published Models of the Pluripotent Network
In Faucon et al. (2014), a computational high-throughput screening of fully connected, three node network architectures (Fully Con-

nected Triads; FCTs) indicated that mutually activating FCTs in which the nodes also self-activate are among the architectures with

the highest probability of multistability. The screenings were performed using ODE models that captured activation and repression

additively, in contrast to themodel considered in this paper, which captures transcriptional regulation using cooperative Hill functions

to account for the known co-binding of these factors on the promoters they regulate (Boyer et al., 2005). In Chickarmane et al. (2006),

the fully connected triad (FCT) of Oct4, Sox2, and Nanog wasmodeled in a four dimensional ODEmodel that tracked the evolution of

concentrations of Oct4, Sox2, Nanog, and the heterodimer Oct4-Sox2 ([O],[S],[N],[OS], respectively). In contrast, the model in this

paper lumped together Oct4 and Sox2 into a single variable ðO2Þ, and treated the OS heterodimer as this complex. Furthermore,

our model treated Nanog as a homodimer when transcriptionally regulating promoters (Wang et al., 2008; Mullin et al., 2008). In
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Kalmar et al. (2009), a two dimensional auto and mutually activating motif between Oct4 and Nanog also included repressive regu-

lation from Oct4 onto Nanog at sufficiently high concentrations of Oct4. However, this model treated Nanog as a monomer and used

an entirely different species that represented Oct4 at higher concentrations. In Shu et al. (2013), an ODE model of four variables was

used, which includedOct4, Sox2, ME, and ECT. The latter two variables represent the family of mesendodermal (ME) and ectodermal

(ECT) genes, respectively. In contrast, this paper used amodel that was limited to the core pluripotency network of master regulators

(Oct4, Sox2, and Nanog). In Chickarmane and Peterson (2008), a computational model capturing the same three phenotypes in this

paper (pluripotent, trophectoderm, and primitive endoderm) was used. In addition to treating Oct4, Sox2, and Nanog as nodes in the

network, thismodel included variablesmodeling the lineage specifiers Cdx2 andGata6 aswell as GCNF, while also treating Nanog as

amonomer and the heterodimer Oct4-Sox2 as its own variable. In Li andWang (2013), a 52-nodeODEmodel of the stem cell network

was analyzed in the context of two basins of attraction representing the stem cell progenitor state and the differentiated state. The

ODEs in this model captured activation and repression using additive Hill functions.

In Faucon et al. (2014), a computational high-throughput screening of fully connected, three node network architectures (Fully Con-

nected Triads; FCTs) indicated that mutually activating FCTs in which the nodes also self-activate are among the architectures with

the highest probability of multistability. The screenings were performed using ODE models that captured activation and repression

additively, in contrast to themodel considered in this paper, which captures transcriptional regulation using cooperative Hill functions

to account for the known co-binding of these factors on the promoters they regulate (Boyer et al., 2005). In Chickarmane et al. (2006),

the fully connected triad (FCT) of Oct4, Sox2, and Nanog wasmodeled in a four dimensional ODEmodel that tracked the evolution of

concentrations of Oct4, Sox2, Nanog, and the heterodimer Oct4-Sox2 ([O],[S],[N],[OS], respectively). In contrast, the model in this

paper lumped together Oct4 and Sox2 into a single variable ðO2Þ, and treated the OS heterodimer as this complex. Furthermore,

our model treated Nanog as a homodimer when transcriptionally regulating promoters (Wang et al., 2008; Mullin et al., 2008). In Kal-

mar et al. (2009), a two dimensional auto and mutually activating motif between Oct4 and Nanog also included repressive regulation

from Oct4 onto Nanog at sufficiently high concentrations of Oct4. However, this model treated Nanog as a monomer and used an

entirely different species that represented Oct4 at higher concentrations. In Shu et al. (2013), an ODE model of four variables was

used, which includedOct4, Sox2, ME, and ECT. The latter two variables represent the family of mesendodermal (ME) and ectodermal

(ECT) genes, respectively. In contrast, this paper used amodel that was limited to the core pluripotency network of master regulators

(Oct4, Sox2, and Nanog). In Chickarmane and Peterson (2008), a computational model capturing the same three phenotypes in this

paper (pluripotent, trophectoderm, and primitive endoderm) was used. In addition to treating Oct4, Sox2, and Nanog as nodes in the

network, thismodel included variablesmodeling the lineage specifiers Cdx2 andGata6 aswell as GCNF, while also treating Nanog as

amonomer and the heterodimer Oct4-Sox2 as its own variable. In Li andWang (2013), a 52-nodeODEmodel of the stem cell network

was analyzed in the context of two basins of attraction representing the stem cell progenitor state and the differentiated state. The

ODEs in this model captured activation and repression using additive Hill functions.
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