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SUMMARY

Metabolism is an emerging stem cell hallmark tied
to cell fate, pluripotency, and self-renewal, yet sys-
tems-level understanding of stem cell metabolism
has been limited by the lack of genome-scale
network models. Here, we develop a systems
approach to integrate time-course metabolomics
data with a computational model of metabolism to
analyze the metabolic state of naive and primed
murine pluripotent stem cells. Using this approach,
we find that one-carbon metabolism involving phos-
phoglycerate dehydrogenase, folate synthesis, and
nucleotide synthesis is a key pathway that differs be-
tween the two states, resulting in differential sensi-
tivity to anti-folates. The model also predicts that
the pluripotency factor Lin28 regulates this one-car-
bon metabolic pathway, which we validate using
metabolomics data from Lin28-deficient cells. More-
over, we identify and validate metabolic reactions
related to S-adenosyl-methionine production that
can differentially impact histone methylation in naive
and primed cells. Our network-based approach
provides a framework for characterizing metabolic
changes influencing pluripotency and cell fate.
INTRODUCTION

Pluripotent stem cells are able to self-renew and have the capac-

ity to regenerate all tissues in the human body. Recently, there
Cell Rep
This is an open access article under the CC BY-N
has been a resurgence of interest in stem cell metabolism due

to its role in affecting signaling pathways and epigenetic pro-

cesses, apart from synthesizing precursors and generating en-

ergy for stem cell renewal. Understanding the metabolism of

pluripotent stem cells holds promise for understanding early

development as well as for regenerative medicine.

Two distinct states of pluripotent stem cells that differ in their

developmental potential have been recently described. Naive

murine embryonic stem cells (ESCs) that closely mirror the inner

cell mass of the pre-implantation embryo are maintained in

culture with ERK/MEK inhibitor and GSK3 inhibitor (2i) (Nichols

and Smith, 2009), whereas primed ESCs derived from the post-

implantation embryo are maintained in the presence of fibroblast

growth factor 2 (FGF2) andActivin (Brons et al., 2007; Tesar et al.,

2007). These states also show distinct patterns of metabolism.

Naive cells predominantly employ mitochondrial oxidative meta-

bolism (Huang et al., 2014; Takashima et al., 2014; Zhou et al.,

2012) and utilize more glucose and less glutamine to make a-ke-

toglutarate,which in turn influences histone andDNAmethylation

(Carey et al., 2015). Human naive-like cells derived with different

protocols (Gafni et al., 2013; Takashima et al., 2014; Theunissen

et al., 2014; Ware et al., 2014) consistently exhibit high oxidative

metabolism, as well as low S-adenosyl-methionine (SAM) levels

due to high consumption that presumably leads to histone hypo-

methylation (Sperber et al., 2015), a characteristic of the naive

state (Marks et al., 2012). It has been shown that mouse ESCs

in LIF/serum media (a metastable state between naive and

primed) utilize threonine to feed the SAM pool for H3K4 methyl-

ation (Shyh-Chang et al., 2013), and human ESCs require methi-

onine tomaintain pluripotency (Shiraki et al., 2014). However, the

role and activity of enzymes involved in one-carbon metabolism,

which impacts nucleotide biosynthesis, redox homeostasis, and

methylation reactions, in two clearly defined naive and primed
orts 21, 2965–2977, December 5, 2017 ª 2017 The Authors. 2965
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Figure 1. Overview of Our Approach to Integrate Time-Course Metabolomics (Intracellular or Extracellular) with Genome-Scale Metabolic

Models to Reconstruct the Metabolic Network of Different Cell Fates

(A) A simple metabolic network consisting of two parallel pathways to produce the growth-associated metabolite C is shown, along with its corresponding

stoichiometric matrix representation. Deleting reactions 2 or 4 should impact the biomass production equally in this model.

(B) Time-coursemetabolomics data from two different conditions are then overlaid onto themetabolic networkmodel and dynamicmetabolites are identified. The

accumulation or depletion of metabolites resulting from increased or decreased flux through the reactions involving those metabolites are represented in silico

(legend continued on next page)
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pluripotency states ofmouse ESCs has not been explored from a

systems perspective.

The enormous size and complexity of the mammalian meta-

bolic networks has so far limited systems-level understanding

of stem cell metabolism. Expression analysis of metabolic genes

ormetabolomics can provide a snapshot of themetabolic status,

but is limited because gene or metabolite changes often do not

reflect the flux of the metabolic reactions. Isotope tracing anal-

ysis can determine flux but only focuses on specific metabolic

pathways and does not give a systems perspective of the entire

network. Pathway enrichment analysis is another commonly

used approach to characterize metabolic changes at the

systems level (Subramanian et al., 2005; Xia et al., 2015). How-

ever, given the highly inter-connected nature of the metabolic

network, the underlying assumption behind pathway enrichment

analysis that each pathway is independent of each other does

not hold for metabolism (Shlomi et al., 2008). Adjacent pathways

on the network can influence each other’s activity, and altered

flux activity can arise due to perturbations upstream of a given

pathway. Furthermore, individual enzymes in a pathway do not

change coherently as a whole and can have different levels of

activity. A systems-level model is thus needed to understand

metabolic differences between different cell states at both the

individual reaction level and the network level.

Here, we use genome-scale computational modeling to

comprehensively characterize themetabolism of different plurip-

otent stem cell states. Genome-scale metabolic network models

are manually curated and represent the mechanistic relation-

ships among thousands of genes, proteins, and metabolites

within a biological system (Bordbar et al., 2014). Recently,

genome-scalemetabolic models have been integrated with tran-

scriptomics data to identify a subset of metabolic genes that are

active in a system. Such transcriptomics-constrained models

have been applied successfully to predict metabolic behaviors

of human tissues and cancer cells at steady state (Frezza

et al., 2011; Uhlén et al., 2015).

Because stem cell metabolic rewiring is dynamic (i.e., not at

steady state) and has been known to be regulated at the post-

transcriptional level (Zhang et al., 2016), we developed a

genome-scale modeling approach to directly infer metabolic

states based on time-course metabolomics data. Similar to

pathway enrichment analysis where increased levels of metabo-

lites in a pathway suggests increased pathway activity in a

condition, we assume that the accumulation or depletion of a

metabolite over time is evidence for increased or decreased

overall flux activity of the set of reactions involving the metabo-

lite. By integrating data from several metabolites into a unified

genome-scale model, we can identify reactions whose differen-

tial activity will most likely explain the observed pattern ofmetab-

olomic changes.

We first validate this approach by identifying metabolic vulner-

abilities of the NCI-60 cancer cell lines. This approach is then
using flux-activity coefficients. A global metabolomics-consistent metabolic net

gration reveals a higher flux through reaction 2 in condition 1 and a higher flux th

(C) Differentially sensitive and differentially active metabolic reactions are determ

(D) Overview of the steps in processing metabolomics data, integration with the

(E) A genome-scalemodel of metabolism is used to integrate data across hundred
applied to characterize murine naive and primed ESC metabolic

states, and track the metabolic effect of Lin28, a pluripotency

factor (Viswanathan andDaley, 2010) associated with the primed

state (Zhang et al., 2016). We confirm a transition of mitochon-

drial metabolism and uncovered an elevation of one-carbon

metabolism pathways from naive to primed state. Using Lin28

knockout pluripotent stem cells as a surrogate of the naive state,

we demonstrate a pivotal role of Lin28 in conferring the unique

one-carbon and nucleotide metabolism associated with primed

pluripotency.

RESULTS

Construction of a Dynamic Genome-Scale Metabolic
Model
Our proposed approach integrates time-course metabolomics

data with a genome-scale metabolic network model and makes

use of the flux balance analysis (FBA) framework to infer the

metabolic state of a condition (Orth et al., 2010). The FBA

approach identifies the optimal flux through each reaction

in the metabolic network that maximizes a specific objective

such as the growth rate, while satisfying stoichiometric and

mass-balance constraints.

The integration of metabolite levels with genome-scale meta-

bolic models has been a significant challenge due to the lack of

thermodynamic and kinetic parameters (Cotten and Reed, 2013;

Yizhak et al., 2015). In addition, integrating metabolomics mea-

surements from mammalian systems poses additional chal-

lenges due to noise in the data, the undefined nature of serum

components in the media, and compartment-specific meta-

bolism. In microbial dynamic flux-balance models, time-course

metabolomics measurements are used to explicitly determine

metabolite accumulation/depletion rates (Kleessen et al., 2015;

Schmidt et al., 2013). In contrast, given the complexity associ-

ated with eukaryotic metabolic measurements due to cellular

heterogeneity and compartmentalization, our approach uses

time-course metabolomics measurements as cues for likelihood

of altered flux activity around a metabolite. Our approach tries to

identify a metabolic state that best fits the metabolomics data

while allowing for deviations from observed pattern of accumu-

lation or depletion of metabolites. Network integration is then

used to combine these cues into a global, consistent metabolic

state (Experimental Procedures; Figure 1).

Usingour approach,wecan infer the impactof theobserveddif-

ferential metabolite levels on the corresponding reaction, the

encompassing metabolic pathway, and the entire network of

thousands of metabolic reactions. Furthermore, the input data

can be either intracellular or extracellular. In the metabolic model,

metabolites in each compartment (i.e., extracellular, cytosol,

mitochondria, nucleus, or other organelles) are distinct from

each other. Transport reactions are used to connect metabolites

in different compartments. Because the network is unified, the
work state is determined for each condition. In this case, metabolomics inte-

rough reaction 4 in condition 2.

ined by performing genome-scale reaction deletion analysis and FVA.

metabolic model, and prediction of metabolic vulnerabilities.

s ofmetabolites to identify differentially sensitive reactions between conditions.
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impact of changes inmetabolites in any compartment canbe pre-

dicted on the network. For example, changes in extracellular

metabolite levels will impact the uptake or secretion flux of these

metabolites, which in turn will impact reactions downstream of

these transport reactions. Hence, data from extracellular mea-

surements can be directly utilized to constrain the model using

the same mathematical framework used for intracellular metabo-

lites. This approach goes beyond traditional pathway enrichment

analysis by creating a genome-scalemodel of themetabolic state

of a system.The in silicomodel canbesubsequentlyused tosimu-

late deletion of metabolic genes or inhibition of enzymes, in addi-

tion to identifying differentially active reactions and pathways.

As a validation of ourmethod in complex mammalian systems,

we applied it to predict the metabolic vulnerabilities of the

NCI-60 cancer cell lines. The metabolic properties of these cell

lines have been characterized using metabolomics collected at

two different time points (Jain et al., 2012). Using our approach,

we integrated these time-course metabolomics data with

a genome-scale model of human metabolism (Duarte et al.,

2007) consisting of 1,487 genes and 3,744 metabolic reactions

to map the metabolic state of each of the NCI-60 cell lines.

We simulated deletion of all metabolic genes in the model and

predicted the effect of deletion on the growth of the cell. Some

genes affected the growth of all the cell lines, whereas others

were more selective for specific cell and tissue type (Figure 2A).

We first identified commonmetabolic vulnerabilities across all 60

cell lines. This was done by identifying genes that when deleted

impact growth by at least 5%of thewild-type (Figure 2A; Supple-

mental Experimental Procedures). Comparing the predicted

metabolic vulnerabilities with data from small interfering RNA

(siRNA) and CRISPR Cas9 gene knockdown screens (Cheung

et al., 2011; Marcotte et al., 2012; Aguirre et al., 2016) revealed

that cell lines were significantly more sensitive to siRNAs target-

ing these genes compared to other metabolic genes, suggesting

that the genes identified by our approach were more likely to be

essential to the growth of these cell lines (p value = 83 10�3, 23

10�15, and 33 10�3, respectively, for siRNA [Cheung et al., 2011;

Marcotte et al., 2012] and CRISPR data [Aguirre et al., 2016],

one-sided Kolmogorov-Smirnov test [KS] test). As a negative

control, prediction using the metabolic model without metabolo-

mics constraint resulted in no significant enrichment.

We next used the integratedmodel to determinemetabolic dif-

ferences between the cell lines. We identified metabolic genes

that were differentially vulnerable in a cell line relative to the re-

maining cell lines (Figure 2A). These genes were also more likely

to be predicted as selectively vulnerable in these cell lines based

onboth siRNAandCRISPR-Cas9 screens (p value=3310�3, 13

10�6, and 13 10�3, respectively, for siRNA [Cheung et al., 2011;

Marcotte et al., 2012] andCRISPRdata [Aguirre et al., 2016], one-

sided KS-test) (Figures 2B–2D). These results are notable given

the variable nature of high-throughput siRNA screens andmetab-

olomicsdata acrossdifferent studies. These findings suggest that

our approach can accurately capture metabolic differences be-

tween cell states using time-course metabolomics data.

Modeling Murine Naive and Primed ESC Metabolism
To characterize the metabolic state of mouse ESCs in naive and

primed states, we measured levels for over 200 metabolites at
2968 Cell Reports 21, 2965–2977, December 5, 2017
three time points (Figure 3A). The metabolomics data revealed

changes in several metabolites, but these were not specifically

related to any one pathway. Pathway enrichment analysis of

metabolomics data mirrored this complexity and only two path-

ways—purine metabolism and urea cycle—were predicted to

be differentially active at false discovery rate (FDR) < 0.05 (Tables

S1A and S1B). Enrichment analysis of gene expression data of

these two states also did not reveal any significant differential ac-

tivity for a metabolic pathway over the background (FDR < 0.1).

Changes inmetabolic pathwaysweremaskedby strong changes

in other pathways such as signaling pathways (Table S1E).

Given the limited insight from enrichment analysis, we applied

our dynamic genome-scale modeling approach to tease out the

underlying metabolic differences between the two cell fates.

The metabolomics data were then used to create a dynamic

genome-scale metabolic model of the naive and primed state

(Figure 3A). We performed deletion analysis of all the metabolic

reactions to discover differences between the two metabolic

networks (Figure 3B). In addition to reaction deletion analysis,

which identified the dominant metabolic differences between

the two states, we used flux variability analysis (FVA) to deter-

mine the range of feasible fluxes for each reaction based on

thermodynamic, stoichiometric, and metabolomics constraints

(Mahadevan and Schilling, 2003). FVA can capture flux differ-

ences in essential reactions, which cannot be inferred through

deletion analysis as they are lethal to both states. The combina-

tion of reaction deletion analysis and FVA was used to prioritize

reactions that showed differential sensitivity and flux activity.

The majority of the 3,744 reactions (96%) did not show selec-

tivity between the two states, i.e., their knockout affected both

states to the same extent. Among the reactions that were selec-

tive, the primed state network was more sensitive to knockout

of reactions in folate/SAM/one-carbon metabolism, cysteine-

methionine synthesis, and purine synthesis, whereas the naive

state was more sensitive to reactions in oxidative phosphoryla-

tion, tricarboxylic acid (TCA) cycle, and pyrimidine synthesis

(Figures 3B and 3C). We also observed that reactions in mito-

chondria were more sensitive in the naive state. For example, re-

actions involving folate in the cytoplasm were more active in the

primed state, whereas folate reactions in mitochondria were

more active in the naive state (Tables S2A and S3A).

Validating Predicted Metabolic Differences between
Naive and Primed Mouse ESCs
Consistent with the in silico predictions, we found using
13C-glucose and 13C-glutamine tracing that, in the naive

state, glucose had increased incorporation into the mitochon-

drial TCA cycle metabolites such as citrate, a-ketoglutarate/

glutamate, fumarate, and malate, and decreased incorporation

into one-carbonmetabolismmetabolites such as serine, 3-phos-

phoserine, andmethionine; glutamine had decreased incorpora-

tion into nucleotides (Figures 3D and 3E; Figures S1A and S1B).

Overall, metabolites associated with differentially sensitive reac-

tions were also more likely to be differentially labeled between

the two states (p value = 0.005, hypergeometric test; Figure S1F),

confirming the strong concordance between two datasets.

To further assess the importance of folate and one-carbon

metabolism predicted by the model, we tested our predictions



Figure 2. Validation of Our Approach to Infer Metabolic States from Time-Course Metabolomics Data by Applying It to Predict the Metabolic

Behavior of NCI-60 Cancer Cell Lines

(A) Table of cell-line-specific metabolic vulnerabilities predicted by our approach. The predicted growth (measured by ATP flux) of 48 differentially sensitive gene

knockouts in the NCI-60 cell lines is shown relative to wild-type. Highlighted genes affect ATP flux across all cell lines.

(B) The set of cell-line-specific metabolic gene vulnerabilities predicted by our approach were consistent with siRNA screens. The GARP (gene activity rank

profile) scores of genes that were sensitive (vulnerable) in a cell line were found to be lower than those that were not predicted to be sensitive in a given cell line.

The lower the GARP score for a given cell line, the more essential is the gene in that particular cell line (data fromMarcotte et al., 2012). The distribution of GARP

scores for the sensitive and non-sensitive associations are shown. The distributions were compared using the KS test (p value = 10�6).

(C) Predictions were also consistent with siRNA knockout screen (p value [KS test] = 0.0034; Cheung et al., 2011). Distribution of ATARIS (analytic technique for

assessment of RNAi by similarity) z-scores are shown for sensitive and non-sensitive gene knockouts across all cell lines.

(D) Predictions were also consistent with a CRISPR/Cas9-mediated knockout screen (p value [KS test] = 0.0012; Aguirre et al., 2016). Distribution of ATARIS

z-scores are shown for sensitive and non-sensitive gene knockouts across all cell lines.

(E) Sensitivity analysis of the dynamic modeling approach. Increasing the weight parameter (kappa) results in increasing weight for the metabolomics data over

growth. Correlation with the default settings (kappa = 1, i.e., equal weights for growth and metabolomics) and after changing kappa is shown for the predicted

difference in growth between naive and primed states after deletion of all the 3,744 metabolic reactions in the model.

(F) The approach is robust to noise in the metabolomics data. 10%, 25%, and 33% of the metabolites in the metabolomics data were randomly removed, and the

impact on the predictions between naive and primed state was analyzed. Correlation from predictions using this randomly sampled data with the predictions

using the entire dataset is shown. Predictionsmade by using just the direction of change (accumulation or depletion) without themagnitude also gave qualitatively

similar predictions as using the entire data (shown as yellow bar).
by using the anti-folate compound methotrexate. Methotrexate

is a well-established inhibitor of nucleotide synthesis and folate

synthesis that has been used in many previous studies (Singh
et al., 2006). It inhibits dihydrofolate reductase (DHFR), which

participates in tetrahydrofolate synthesis and thus impacts de

novo synthesis of purines and thymidine. As predicted by the
Cell Reports 21, 2965–2977, December 5, 2017 2969



Figure 3. Mapping the Metabolic Differences between Naive and Primed Stem Cells Using the Computational Model of Metabolism

(A) Overview of our approach to measure time-course metabolomics data and identify differentially active reactions.

(B) To identify differentially active metabolic reactions, we performed reaction knockout analysis on the naive and primed metabolic networks. The histogram

shows the distribution of growth rates after in silico deletion of all the metabolic reactions. The horizontal x axis shows the relative selectivity of each knockout for

naive state versus the primed state. The stronger the magnitude of selectivity, the greater the difference between the growth rate of the reaction knockout

between two states. The majority (96%) of knockouts do not have a differential effect on naive or primed metabolism. The y axis shows the total number of

reactions in each bin. Metabolic reactions that showed the greatest differences in growth between the two states are highlighted. The full list of reactions and their

abbreviations are provided in Table S2A. The suffix ‘‘m’’ at the end of each reaction name indicates a reaction occurring inmitochondria; isoforms are represented

with numerical suffixes (orange: more sensitive to deletion in naive; purple: more sensitive to deletion in primed).

(C) Schematic diagram of themetabolic pathways that are predicted to differ between the two states (naive, orange labels; primed, pink labels) as identified by the

model. The thickness of the reaction name label border is proportional to the extent of the differential activity of the reactions between the two states. Reactions

predicted to impact SAM flux in primed state (MAT, AHC, and METS) are also highlighted (Table S4).

(D) 13C tracing of glucose revealed that metabolites in the one-carbon and nucleotide metabolism were differentially labeled between the two conditions sug-

gesting re-routing of metabolic flux. The heatmap shows the total isotopomers labeled at different time points for each metabolite after z-transformation

(Supplemental Experimental Procedures).

(legend continued on next page)
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model, primed cells were more sensitive to inhibition by metho-

trexate (Figure 3F). In contrast, naive cells weremore sensitive to

mitochondrial folate metabolism inhibition by the drug MTH-

1459 that blocks MTHFD2 activity, also confirming the in silico

predictions (Figure 3F).

Decreasedone-carbonmetabolism in the naive statemight not

be caused by reduced glycolysis because 13C incorporation to

lactatewasnot lower in thenaive state (FigureS2D). Furthermore,

even though 13C incorporation from glucose to the ribose moiety

of nucleotide and nucleoside was lower in naive cells (Figure 3D;

Figure S2C), it was not caused by the pentose phosphate

pathway, as metabolites in this pathway were not differentially

measured in either state (Figure S2D). On the other hand, 13C

incorporation from serine to nucleobase moieties was lower in

naive cells (Figure S2E), indicating one-carbon metabolism

through N10-formyl-tetrahydrofolate (f-THF) accounted for

reduced nucleotide biosynthesis. 13C incorporation from gluta-

mine to nucleobase moieties through aspartate was also lower

in naive cells (Figure 3E), which could be attributed to lower gluta-

mine incorporation into the TCA cycle (Figure S2B). In summary,

these data suggest that the one-carbon metabolism pathway

branching from glycolysis is more active in the primed state.

In addition, mRNA transcripts of genes associated with the

reactions predicted by the model to be differentially sensitive

were also significantly more likely to be differentially expressed

(pvalue=0.003, t test; FigureS1G).Althoughpathwayenrichment

of transcriptomics data did not identify differential activity of these

pathways, analysis of specific transcripts prioritized by themodel

revealed lower expression of folate pathway genes Mthfd1,

Mthfd2, Mthfd2l, Mthfs, Mthfr, and Dhfr, and nucleotide biosyn-

thesis pathway genes Adsl, Atic, andGart, in the naive state cells

(Figure S1E). Further assessment of in vivo embryonic day 4.5

(E4.5) pre-implantation epiblast (naive) versus E5.5 post-implan-

tation epiblast (primed) also showed lower expression of Phgdh,

Psat, Shmt1/2 (serine metabolism), Mthfd1l, Mthfs, Mtfhfd2,

Dhfr (folate pathway), Mat2a, Mat1a, Cbs (methionine/cysteine

metabolism), andAdsl,Gart,Tyms,Atic,Paics (nucleotidebiosyn-

thesis) (Figure S1H). A dormant state of diapause characteristic of

the embryonic epiblast showed the lowest expression of most

genes listed above (Figure S1H) (Boroviak et al., 2015). Taken

together, these data suggest that mouse naive state pluripotency

is associated with lower one-carbon metabolism and glutamine

metabolism required for nucleotide biosynthesis.

Tracking Metabolic Network Rewiring by Lin28
We next examined the metabolic state of naive induced pluripo-

tent stem cells (iPSCs) cultured in LIF/2i condition depleted of

Lin28. Lin28 knockout cells show elevated naive state features

compared with wild-type cells; they have defects in priming

and do not grow well in the primed condition (FGF2/Activin).

Indeed, our prior analysis has indicated that Lin28-deficient cells
(E) 13C tracing of glutamine revealed that metabolites in nucleotide metabolism w

the two states (p < 0.05) are displayed in (D) and (E) heatmaps. n = 3 for each tim

(F) Viability of cells after treatment with the anti-folate methotrexate and the mitoc

FGF2/Activin for 3 days at the time of measurement. Error bars represent SEM. n

different between naive and primed cells for both inhibitors (p value = 0.01 and 5

rank test).
represent a surrogate for the naive-state metabotype (Zhang

et al., 2016).

With the same approach using time-course metabolomics

data and reaction deletion analysis, we discovered similar meta-

bolic differences in one-carbon, oxidative phosphorylation and

nucleotide metabolism between Lin28 knockout and wild-type

cells (Tables S2B and S3B). Lin28 knockout cells were more

sensitive to deletion of reactions in the mitochondria, and less

sensitive to deletion of one-carbon metabolism reactions, remi-

niscent of the naive state compared with the primed state (Fig-

ures 4A–4C). The comparison between Lin28 knockout cells

and wild-type cells (both in 2i) differed from the comparison be-

tween naive cells and primed cells in the activity of the pentose

phosphate pathway (Figure 4D). This analysis also revealed the

importance of the nucleotide salvage pathway in Lin28 knockout

cells, with reactions in purine salvage and purine cycle pathways

such as Hgprt, predicted to have higher flux in Lin28 knockout

cells (Figures 4A and 4B). This could explain a previous report

that these cells are deficient in de novo nucleotide biosynthesis

and addition of nucleotides in the media rescues this phenotype

(Zhang et al., 2016). Time-course analysis of 13C-glucose incor-

poration also showed lower flux to nucleotides in Lin28 knockout

cells (Figure 4C; Figure S1C). In addition, 13C-glutamine tracing

revealed knockout cells had lower flux to nucleotide, similar to

the 2i naive state (Figure 4C; Figure S1D).

We next quantified the overall similarity of the 3,744 reaction

sensitivities between naive, primed, lin28 knockout, and wild-

type cells using unsupervised clustering and multi-dimensional

scaling (MDS) analysis (Figures 4D and 4E). Hierarchical clus-

tering analysis revealed that most reactions that show differential

sensitivity between cell states share the same direction of

change in both naive versus primed cells and DLin28 versus

wild-type cells, suggesting broad similarities between the two

scenarios (Figure 4D). A small subset of reactions showed the

opposite direction of change in DLin28 versus wild-type

compared to naive versus primed cells, suggesting that these

two scenarios are similar, but not identical (Figure 4D). MDS

analysis, which visualizes the entire set of variation in a data in

three dimensions, confirmed that knockout of Lin28 moves the

cellular metabolic network of iPS cells closer to the naive ESC

state (Figure 4E).

Simulating Impact of Metabolic Pathways on Histone
Methylation
The one-carbon metabolism pathway is required for histone

methylation in ESCs through modulating the SAM/S-adenosyl-

L-homocysteine (SAH) ratio (Shyh-Chang et al., 2013) (Figure 3C).

To assess the impact of the naive and primed metabolic

network states on histone methylation, we simulated the effect

of metabolic reaction deletions on SAM flux and subsequently

histone methylation under the assumption that SAM is a limiting
ere differentially labeled. Metabolites showing significant differences between

e point.

hondrial MTHFD2 inhibitor for 2 days. For primed cells, ESCs were treated with

= 3. *p < 0.05. Error bar represents SEM. The viability curves were significantly

3 10�4 for MTHFD2 inhibitor and methotrexate, respectively; Wilcoxon signed
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Figure 4. Mapping the Metabolic Differences of Lin28 Knockout versus Wild-Type PSCs Using the Computational Model of Metabolism

(A) The histogram shows the distribution of growth rates after in silico deletion of all the metabolic reactions. The horizontal x axis shows the relative effect of each

gene knockout on the growth rate of Lin28 knockout versus wild-type cells (selectivity). The y axis shows the total number of reactions in each bin. Top pathways

with multiple differential reactions are highlighted; see Table S2B for the full list of reactions (naive, orange; primed, purple).

(B) Schematic diagram of themetabolic pathways that are predicted to differ between the two states (wild-type, orange labels;DLin28, pink labels) as identified by

the model. The thickness of the reaction label border is proportional to the extent of the differential activity of the reactions between the two states.

(C) (Left) 13C tracing of glucose revealed that metabolites downstream of the PHGDH, MTR, MTHFR, UMPS, and DHODH pathways were differentially labeled

between the two conditions, suggesting re-wiring of the metabolic network of these two states. (Right) 13C tracing of glutamine revealed that glutamine flux is

routed toward nucleotide metabolism in wild-type cells. Metabolites that are differentially labeled (p < 0.05) are displayed in both heatmaps. n = 3 for each time

point. The heatmaps show the total isotopomers labeled at different time points for each metabolite after z transformation (Supplemental Experimental

Procedures).

(D) Unsupervised hierarchical clustering analysis of the entire set of 3,744 reactions and their differential activity between naive and primed cells, and lin28

knockout versus wild-type cells. Reactions are clustered based on extent of similarity between the two comparisons (naive versus primed and DLin28 versus

wild-type [WT]). The majority of reactions do not have differential impact in any state (yellow color in both rows). The bottom panel shows the cluster of 220

reactions that exhibit differential sensitivity between different cell states. Overall, even reactions that show differential sensitivity have the same direction of

change in both naive versus primed cells andDLin28 versusWT cells, suggesting broad similarities between the different states (96.6% similarity). A small subset

of reactions (N = 33) shows opposite differences in DLin28 versus WT compared to naive versus primed cells; reactions with the strongest differences are

highlighted.

(E) MDSanalysis captures the overall metabolic differences between cell states and confirmed that knockout of Lin28moves the cellularmetabolic network closer

to naive cell metabolism.
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Figure 5. Prediction and Validation of Intracellular SAM Levels and Global Histone Methylation

(A) Using the metabolic model, we predicted metabolic changes that can impact SAM flux and subsequently histone methylation. The histogram shows the

distribution of SAM flux toward histonemethylation after deletion of all themetabolic reactions. The horizontal x axis shows the relative effect of each knockout on

SAM flux in the naive state versus the primed state (selectivity). The y axis shows the total number of reactions in each bin. Metabolic reactions that showed the

(legend continued on next page)
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metabolite for methylation. Deletion of reactions in one-carbon

metabolism and nucleotide metabolism preferentially affected

SAM production in the primed state over the naive state (Fig-

ure 5A; Table S4). We experimentally validated this prediction

by treating cells with 3-deazaadenosine (3-DZA), a SAH hydro-

lase inhibitor that decreases the SAM/SAH ratio, and found

that it more profoundly affected H3K4, H3K9, and H3K27 trime-

thylation in the primed state relative to the naive state (Figure 5B).

Furthermore, treatment with 3-DZA affected wild-type H3K9 tri-

methylation more than Lin28 knockout, consistent with the role

of Lin28 in the primed state (Figure 5C). FBA also revealed higher

flux through SAM synthesis reactions in the primed state, sug-

gesting that the primed state relies more on one-carbon meta-

bolism for production of SAM (Table S4). Consistent with the

in silico prediction, the primed metabolic state has higher 13C

incorporation from serine toward SAM than the naive state

based on tracing 13C-labeled serine (Figure 5E). Furthermore,

histone methyltransferases and demethylases are not differen-

tially expressed in these two states; hence altered SAM meta-

bolism can explain the observed differential histone methylation

(Figure 5D).

DISCUSSION

Metabolism influences gene-regulatory networks that govern

cell fate choices (Ryall et al., 2015; Zhang et al., 2012), in both

pluripotent stem cells (Carey et al., 2015) and various types of

adult progenitor/stem cells (Peng et al., 2016; Yang et al.,

2016). Given the development potential of naive ESCs compared

to primed ESCs, it is critical to understand the metabolic

differences between these pluripotent cell fates. Analysis using

our dynamic metabolic modeling framework revealed three

insights on pluripotent stem cell metabolism. First, previous

studies showed higher mitochondria function in mouse ESCs,

in comparison to EpiSC or human ESCs (Zhou et al., 2012).

Furthermore, human naive-like cells have higher nicotinamide

N-methyltransferase (NNMT) activity that consume SAM

(Sperber et al., 2015). Here, we comprehensively characterized

the metabolic network of two bona fide pluripotent states in

mouse ESCs and discovered that, during priming, the entire

one-carbon metabolic pathway is activated, including upstream

serine production from glucose and downstream SAM and

nucleotide production through folate cycle and methionine

cycle. This makes mouse primed ESCsmore vulnerable to folate

metabolism inhibition and SAM/SAH repression. Interestingly,

this effect is compartment specific, with folate inhibition in mito-

chondria more sensitive in naive cells, whereas cytoplasmic inhi-

bition is more sensitive in primed cells. Our systems approach
greatest differences in SAM flux between the two states are highlighted. No reac

threshold of �2.

(B) Western blotting of H3K4me3, H3K9me3, and H3K27me3 of naive and primed

the bands.

(C)Western blotting of H3K9me3 of wildtype (WT) and Lin28 knockout (DKO) PS ce

ratio averaged from two experiments. The untreated WT ratio was used as refere

1 and 0.33 ± 0.1 and for Lin28 knockout is 0.53 ± 0.06 and 0.29 ± 0.11, respecti

(D) The mRNA expression levels of histone methyltransferases and demethylase

(E) Naive and primed cells were labeled with 50% [U13C]-serine for 24 hr, and th
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has thus uncovered a transition of one-carbon metabolism be-

tween two clearly defined naive and primed states.

Second, a previous report found that deleting Lin28 changes

mouse ESCs to a naive-like state. At the network level, broad

similarities between 2i naive and Lin28 knockout cells

were observed. However, unique differences in the pentose

phosphate pathway identified by our analysis suggest that these

states are not identical (Figure 4D). Third, we found that

increased flux through one-carbon pathway leads to higher

flux toward SAM and histone methylation in primed state, and

inhibiting these pathways reduces methylation disproportion-

ately in primed state. A previous report connected NNMT activity

to SAM consumption (Sperber et al., 2015). Our approach re-

vealed that serine flux and the one-carbon metabolic pathway

contribute to SAM production and histone methylation. Consis-

tent with a low SAM pool, naive mouse cells have hypomethy-

lated DNA and histone, and are tolerant to loss of epigenetic

regulators such as DNMT1 and polycomb protein EED, in

contrast to primed cells (Weinberger et al., 2016). Because

recent studies also implied that similar metabolic changes in

one-carbon and oxidative metabolism may occur in converted

human naive-like and primed pluripotent stem cells (PSCs)

(Sperber et al., 2015; Takashima et al., 2014), whether the con-

verted naive-like cells become more tolerant to DNMT1 deple-

tion and/or to SAM/SAH repression, merits careful investigation

to substantiate the identity of those cells.

Pervasive histone methylation is a key feature of primed cells

and our findings directly tie into the biology of primed pluripo-

tency. Our model also suggests that hypomethylation in naive

cells is likely due to the lack of one-carbon donor, SAM. Differen-

tiation potential (governed by epigenetic regulations) and prolif-

eration are the two most important cellular phenotypes that

distinguish naive and primed pluripotent states. The mechanism

of regulation of histone methylation so far is unknown because

histone methyltransferases and demethylases are not differen-

tially expressed in these two states (Figure 5D). Our study pro-

vides evidence that altered one-carbon and SAM metabolism

account for the differential histone methylation in these two

states, which in turn determines expression of various pluripo-

tent and developmental genes.

Our work suggests an interplay between mitochondrial res-

piratory metabolism and one-carbon metabolism during ESC

pluripotent state transitions, pointing to an unappreciated role

of elevated mitochondrial function in naive state pluripotency.

Similar coupling between one-carbon and respiratory meta-

bolism has been recently reported in cancer cell lines (Bao

et al., 2016). Furthermore, many of the enzymes predicted to

be differentially active between naive and primed ESCs, such
tion was predicted to impact SAM production in the naive state over a z-score

cells treated with 20 mM 3-DZA for 2 days. Lower panels show densitometry of

lls treatedwith 20 mM3-DZA for 2 days. Bar graph shows the H3K9me3 to actin

nce. The H3K9me3 to actin ratio before and after treatment with DZA for WT is

vely. Image from one representative blot is shown.

s are similar in both the naive and primed states (n = 4).

e fraction of each SAM isotopomer is shown.



as PHGDH, MTHFR, and other one-carbon metabolism pathway

constituents, have also been associated with tumor initiation,

progression and metastases (Locasale, 2013; Piskounova

et al., 2015). Comparison of metabolic genes that are sensitive

in NCI-60 cancer cell lines (Figure 2) with corresponding sensi-

tivity in naive and primed cells (Figure 3) revealed that the meta-

bolic state of many NCI-60 cell lines is surprisingly similar to

naive cell metabolism but not to primed cell metabolism. This

intriguing preliminary observation needs to be explored further

in a future study. Our findings may provide a better understand-

ing of metabolic rewiring during tumorigenesis as well.

Our systems biology approach overcomes a significant chal-

lenge in genome-scale modeling by inferring the metabolic state

of mammalian cells directly from time-course metabolomics

data. The power of our approach is that it can infer the activity

of thousands of reactions based on the measurement of a few

hundred metabolites. Interpreting metabolomics data is quite

challenging due to the highly interconnected nature of metabolic

networks. Themetabolites in our time-course data were involved

in 834 metabolic reactions in the model, even after excluding

ubiquitous metabolites such as ATP and NADH. Hence, it is diffi-

cult to manually infer the differentially active reactions from the

metabolomics data. By overlaying these data onto the model,

we identified a small, prioritized set of reactions that are differen-

tially active between these two states.

Using our approach, we identified compartment-specific dif-

ferences in folate metabolism, which we validated using cyto-

solic and mitochondrial folate inhibitors (Figure 3F). This is

significant given that information on cellular compartments is

lost duringmetabolomicsmeasurement. Furthermore, themodel

correctly identified differences in oxidative phosphorylation

pathway despite there being no direct measurement of this path-

way’s activity. These results highlight the power of our systems

approach to infer metabolic changes based on network topology

that goes beyond traditional analysis of metabolomics data.

Our computational approach still has some limitations

despite these numerous advances highlighted earlier. First,

the algorithm requires the levels of numerous metabolites

(�100) to infer the activity of reactions in the metabolic model.

The accuracy of the approach dropped significantly with data

from fewer than 65 metabolites (i.e., 33% of the data removed;

Figure 2F). Future studies should reveal which metabolites pro-

vide the most predictive power for these models. Second, exist-

ing genome-scale metabolic models lack detailed mapping of

atom transfer from substrates to products, thus preventing

the incorporation of isotopomer labeling distribution from
13C tracing data. 13C flux tracing studies currently use signifi-

cantly smaller metabolic models with atomic mapping to predict

fluxes. Our systems-scale approach can complement such

traditional 13C analysis approaches by making coarse-grained

predictions for a larger set of reactions. Third, our approach is

restricted to predicting the impact of complete enzyme inhibi-

tion or gene knockouts on the metabolic network. As enzyme

kinetic parameters become available, it should be possible to

simulate the systems-level impact of nuanced changes in

enzyme levels.

Looking forward, a systems-level understanding of stem cell

metabolism could allow us to rationally manipulate specific
metabolic modules to facilitate differentiation and aid cell-fate

engineering. Our approach could be readily extended to under-

stand metabolic mechanisms underlying other cell-fate changes

and could open new avenues for computational identification

of metabolic vulnerabilities of cancer cells and other complex

metabolic disorders.
EXPERIMENTAL PROCEDURES

Genome-Scale Metabolic Network Modeling

We used the Duarte et al. (2007) model of human metabolism for all the meta-

bolic modeling in this study as it has been widely applied in literature for under-

standing cellular metabolism of various normal and disease states. We also

used the human Recon 2.0 model and the genome-scale model of mouse

metabolism as further validation. The mouse model was derived based on ho-

mology with the Duarte et al. human model. Using these models leads to the

identification of similar set of genes and pathways that were differentially

active between naive and primed states (Table S2C).

We used FBA to determine the optimal metabolic state that satisfies the

growth objective and the metabolomics constraints. Mathematically, in FBA,

we solve the optimization problem to identify a metabolic state (v, a vector

of reaction fluxes) that maximizes a specific cellular objective, such as the

biomass production or ATP synthesis rate, while satisfying thermodynamic

and mass balance constraints. FBA is formulated as follows:

S:v=b;

where S is the stoichiometric matrix with Sij representing the stoichiometric co-

efficient of metabolite i in reaction j, v is the flux vector, and b represents the

rate of change of metabolites (dM/dt). In traditional FBA, the value of R.H.S

vector b is assumed to be zero to represent steady state. We set this value pro-

portional to the measured rate of change from time-course metabolomics

data. For each dynamic metabolite, we include a flux activity coefficient,

whose value and sign determines whether there is increased or decreased

flux activity involving the metabolite.

S: v!=epsilon
�����!

;

where epsilon is a vector of flux activity coefficient values (s0 for dynamic

metabolites).

The value of the flux activity coefficients is directly determined based on the

rate of change of metabolite levels over time. Because subcellular compart-

ment-specific information is lost during metabolomics measurement, we

assumed that the measured metabolites represent the sum total of those in

the cytoplasm, nucleus, and the mitochondrial compartments in the model.

In addition, some metabolite changes might represent noise in the data, and

these constraints would be predicted to be infeasible by themodel. To account

for these issues, we implemented an approach, defined below, that identifies a

metabolic state that best fits the entire set of metabolomics constraints

simultaneously:

S: v!+alpha
���!�beta

���!
=epsilon
�����!

Minimize
�
alpha
���!

+beta
���!�

:

Alpha and beta are positive vectors that represent deviation from the

measured experimental data (Supplemental Experimental Procedures). The

entire sequence of steps in the dynamic modeling approach is described in

the pseudo-code provided in the supplement (Supplemental Experimental

Procedures).

The approach is robust to relative weights for metabolomics data and

growth objective (as defined by the kappa parameter), and also to noise in me-

tabolomics data (Figure 1E). Using a simple model that takes as input only the
Cell Reports 21, 2965–2977, December 5, 2017 2975



direction of change of metabolites (i.e., accumulating or depleting) without the

magnitude also led to qualitatively similar set of predictions for naive and

primed states (Figure 1F).

In addition to FBA, we used FVA to determine the range of feasible fluxes for

each reaction. Reactions that had either higher minimal flux or both higher

minimal and maximal flux compared to the second condition (naive or primed

state) were considered to have higher activity in that condition.

Software and Data Availability

The MATLAB implementation of the algorithm and associated datasets are

publicly available at the Synapse bioinformatics software repository (https://

www.synapse.org/; synapse ID: syn7253624). Examples and instructions for

running the analysis are also provided. The entire metabolomics data for naive,

primed, and Dlin28 cells are also provided as a supplemental dataset (Tables

S5 and S6). The optimization problem was solved using the Gurobi mathe-

matical programming solver.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

two figures, and six tables and can be found with this article online at

https://doi.org/10.1016/j.celrep.2017.07.048.
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