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SUMMARY

Current machine learning techniques enable robust
association of biological signals with measured phe-
notypes, but these approaches are incapable of
identifying causal relationships. Here, we develop
an integrated ‘‘white-box’’ biochemical screening,
network modeling, and machine learning approach
for revealing causal mechanisms and apply this
approach to understanding antibiotic efficacy. We
counter-screen diverse metabolites against bacteri-
cidal antibiotics in Escherichia coli and simulate their
corresponding metabolic states using a genome-
scale metabolic network model. Regression of the
measured screening data on model simulations re-
veals that purine biosynthesis participates in anti-
biotic lethality, which we validate experimentally.
We show that antibiotic-induced adenine limitation
increases ATP demand, which elevates central car-
bon metabolism activity and oxygen consumption,
enhancing the killing effects of antibiotics. This
work demonstrates how prospective network
modeling can couple with machine learning to iden-
tify complex causal mechanisms underlying drug
efficacy.

INTRODUCTION

Recent advances in high-throughput experimental technologies
and data analyses have enabled unprecedented observation,
quantification, and association of biological signals with cellular
phenotypes. Data-driven machine learning activities are poised
to transform biological discovery and the treatment of human
disease (Camacho et al., 2018; Wainberg et al., 2018; Webb,
2018; Yu et al., 2018a); however, existing techniques for extract-

ing biological information from large datasets frequently encode
relationships between perturbation and phenotype in opaque
‘‘black-boxes’’ that are mechanistically uninterpretable and,
consequently, can only identify correlative as opposed to causal
relationships (Ching et al., 2018). In natural systems, biological
molecules are biochemically organized in networks of complex
interactions underlying observable phenotypes; biological
network models may therefore harbor the potential to provide
mechanistic structure to machine learning activities, yielding
transparent ‘‘white-box’’ causal insights (Camacho et al., 2018;
Yu et al., 2018b).
Chemical and genetic screens are workhorses in modern drug

discovery but frequently suffer from poor (1%–3%) hit rates
(Roses, 2008). Such low hit rates often underpower the bio-
informatic analyses used for causal inference because of limita-
tions in biological information content. Experimentally validated
network models possess the potential to expand the biological
information content of sparse screening data; however, biolog-
ical screening experiments are typically performed indepen-
dently from network modeling activities, limiting subsequent an-
alyses to either post hoc bioinformatic enrichment from
screening hits or experimental validation of existing models.
Therefore, there is a need to develop biological discovery ap-
proaches that integrate biochemical screens with network
modeling and advanced data analysis techniques to enhance
our understanding of complex drug mechanisms (Camacho
et al., 2018; Wainberg et al., 2018; Xie et al., 2017). Here we
develop one such approach and apply it to understanding anti-
biotic mechanisms of action.
Antibiotics, a cornerstone of modern medicine, are threatened

by the increasing burden of drug resistance, which is com-
pounded by a diminished antimicrobial discovery pipeline
(Brown and Wright, 2016). Although the primary targets and
mechanisms of action for conventional antibiotics are well stud-
ied (Kohanski et al., 2010), there is growing appreciation that
secondary processes, such as altered metabolism, actively
participate in antibiotic efficacy (Yang et al., 2017a) and that
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extracellular metabolites may either potentiate (Allison et al.,
2011; Meylan et al., 2017) or suppress (Yang et al., 2017b) the le-
thal activities of bactericidal antibiotics. Although features of
central metabolism (Kohanski et al., 2007) and cellular respira-
tion (Gutierrez et al., 2017; Lobritz et al., 2015) are implicated
in antibiotic lethality across diverse microbial species (Dwyer
et al., 2015), the biological mechanisms underlying antibiotic-
induced changes to metabolism (Belenky et al., 2015; Dwyer
et al., 2014) remain unclear. A deeper understanding of how bac-
terial metabolism interfaces with antibiotic lethality has the po-
tential to open new drug discovery paradigms (Bald et al.,
2017; Murima et al., 2014), making antibiotic-induced cellular
death physiology an attractive topic to investigate with white-
box machine learning.
Here, we integrate biochemical screening, network modeling,

and machine learning to form a white-box machine learning
approach to reveal drug mechanisms of action. We apply this
approach to elucidating metabolic mechanisms of action for
bactericidal antibiotics. We discover that metabolic processes
related to purine biosynthesis, driven by antibiotic-induced
adenine limitation, participate in antibiotic lethality. We show
that adenine limitation increases ATP demand via purine biosyn-
thesis, resulting in elevated central carbon metabolism activity
and oxygen consumption, thereby enhancing the killing effects
of antibiotics. This work demonstrates how network models
can facilitate machine learning activities for biological discovery
and provide insights into the complex causal mechanisms un-
derlying drug efficacy.

RESULTS

A White-Box Machine Learning Approach for Revealing
Metabolic Mechanisms of Antibiotic Lethality
Machine learning aims to generate predictive models from sets
of training data; such activities are typically comprised of three
parts: input data, output data, and the predictive model trained
to compute output data from input data (Figure 1A; Camacho
et al., 2018). Although modern machine learning methods can
assemble high-fidelity input-output associations from training
data, the functions comprising the resulting trained models
often do not possess tangible biochemical analogs, rendering
them mechanistically uninterpretable. Consequently, predictive

Figure 1. A White-Box Machine Learning Approach for Revealing
Metabolic Mechanisms of Antibiotic Lethality
(A) Machine learning activities are typically comprised of three parts: input data

(blue), output data (red), and a predictive model trained to compute output

data from input data (purple).

(B) An overall framework for white-box machine learning. Input screening

perturbations (e.g., metabolite conditions; gray) are first transformed into

enriched biological network states by prospective network modeling (e.g.,

metabolic fluxes; blue). These network simulations are then used as machine

learning inputs to train a predictive model (purple), revealing pathway mech-

anisms underlying the output data (e.g., antibiotic lethality measurements;

red). Because biological networks are mechanistically constructed, features

comprising the predictive models trained by machine learning are, by defini-

tion, mechanistically causal.

(C) E. coliMG1655 cells were treated with three bactericidal antibiotics at 13 or

more different concentrations. Antibiotic IC50 values were quantified following

supplementation with 206 diverse metabolites and normalized by their on-

plate controls. Metabolic network states corresponding to each metabolite

were prospectively simulated using the iJO1366 model of E. coli metabolism

(Orth et al., 2011). For each antibiotic, changes in IC50 were regressed on the

simulated fluxes, and pathwaymechanismswere identified by hypergeometric

testing on metabolic pathways curated by Ecocyc (Keseler et al., 2017).

Identified pathways were validated experimentally.
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models generated by such (black-box) machine learning activ-
ities are unable to provide direct mechanistic insights into how
biological molecules are interacting to give rise to observed phe-
nomena. To address this limitation, we developed a white-box
machine learning approach, leveraging carefully curated biolog-
ical network models to mechanistically link input and output data
(Yu et al., 2018b).
Our approach integrates biochemical screening with prospec-

tive network modeling to provide mechanistically linked training
data for machine learning (Figure 1B). In contrast to existing
data-driven approaches, which generate predictive models
from only the variables or perturbations available in a screen,
we first use prospective network modeling to quantitatively
transform screening perturbations into biologically enriched
network states. Biological information from experimental
screens are applied as boundary conditions to the network sim-
ulations, computing a network representation for each perturba-
tion in the screen (e.g., metabolic fluxes following metabolite
perturbations). These network representations are then used
as input data to train predictive models with the empirical
screening measurements (e.g., quantified cellular phenotypes
in response to screening perturbations) as output data. Because
biological networks are mechanistically constructed, the fea-
tures comprising the predictive models trained by machine
learning are, by definition, mechanistically causal and represent
tangible biochemical species that can be directly tested
experimentally.
Here we applied this integrated screening-modeling-learning

approach to investigate metabolic mechanisms of antibiotic
lethality, demonstrating the ability of this workflow to reveal
new mechanistic insights (Figure 1C). Specifically, we designed
biochemical screens to measure the effects of diverse metabo-
lite supplementations on the lethality of three bactericidal antibi-
otics: ampicillin (AMP, a b-lactam), ciprofloxacin (CIP, a fluoro-
quinolone), and gentamicin (GENT, an aminoglycoside). We
screened combinations of these antibiotics and metabolites in
Escherichia coli, measuring their antibiotic half-maximal inhibi-
tory concentrations (IC50) after 4 h of treatment. Next we pro-
spectively simulated metabolic network states corresponding
to each metabolite perturbation using the iJO1366 genome-
scale model of E. coli metabolism (Orth et al., 2011) with quanti-
tative information from the biochemical screens as modeling
constraints. These simulations comprehensively yield flux esti-
mates for each metabolic reaction in E. coli under each
screening condition. For each antibiotic, we applied machine
learning regression analyses to train a predictive model that
could reveal pathway mechanisms underlying differences in
antibiotic lethality measured in our screen. These pathways
were identified by regularizing the simulated metabolic network
states, regressing the measured IC50 values, and performing
enrichment analyses from metabolic pathway annotations
curated in Ecocyc v.22.0 (Keseler et al., 2017).

Exogenous Metabolites Exert Pathway-Specific Effects
on Antibiotic Lethality
Input-output relationships between E. coli metabolism and anti-
biotic lethality were systematically quantified by measuring anti-
biotic IC50 values following supplementation with metabolites

known to participate in E. coli metabolism (Figure 2A). To avoid
the potentially confounding effects of stationary-phase physi-
ology on antibiotic tolerance, we performed experiments using
exponentially growing E. coli MG1655 cells. These cells were
grown in 3-(N-morpholino)propanesulfonate (MOPS)-defined
minimal medium (Neidhardt et al., 1974) and systematically
screened with an unbiased and semi-comprehensive library of
metabolites against AMP, CIP, andGENT. Screenedmetabolites
were derived from the Biolog phenotype microarrays (PMs) 1–4
(Bochner, 2009), which are comprised of diverse carbon, nitro-
gen, phosphorus, and sulfur species. These PMs contain 206
unique amino acids, carbohydrates, nucleotides, and organic
acids that are included in the iJO1366 genome-scale model of
E. coli metabolism. Antibiotic responses to these 206 metabo-
lites were used for subsequent analyses (Table S1).
Changes in antibiotic IC50 values were modest; in most cases,

less than 2-fold (Figure 2B; Table S2). Hierarchical clustering
of the measured IC50 values revealed that the metabolite
response profiles differed between AMP, CIP, and GENT, high-
lighting their different biochemical targets. However, several me-
tabolites appeared to commonly potentiate or inhibit efficacy
across multiple antibiotics, indicating shared metabolic mecha-
nisms of action. Interestingly, many nitrogen, phosphorus, and
sulfur metabolites increased antibiotic IC50 values, whereas
many carbon metabolites decreased IC50 values, similar to pre-
vious observations (Yang et al., 2017b). These raw data indicate
that the measured antibiotic lethality responses to metabolite
perturbations occurred through specific metabolic pathways
rather than generically as a response to medium enrichment.

Conventional Bioinformatic Analyses Do Not Provide
Novel Mechanistic Insights
To test the capabilities of conventional bioinformatic analyses to
yield mechanistic insights into how the screened metabolites
alter antibiotic lethality, we first performed an enrichment anal-
ysis of metabolites that elicited a 2-fold or more change in
IC50, a conventional definition for a screening ‘‘hit’’ (Table S3).
For each antibiotic, a metabolite set enrichment analysis was
performed in Ecocyc. For AMP (2 metabolites R 2-fold change
in IC50) and GENT (8 metabolites R 2-fold change in IC50), no
pathways were enriched with less than a 5% false discovery
rate (FDR) (q % 0.05). For CIP (19 metabolites R 2-fold change
in IC50), several non-specific pathways related to protein transla-
tion were identified, with top enrichments including ‘‘aminoacyl-
tRNA charging’’ (p = 1.98e!6), ‘‘proteinogenic amino acid
biosynthesis’’ (p = 2.50e!6), and ‘‘amino acid degradation’’
(p = 1.27e!5) (Table S4). These findings are consistent with pre-
vious observations that protein translation inhibitors generally
exert antagonistic effects on antibiotic lethality (Lobritz et al.,
2015; Ocampo et al., 2014). Collectively, these results illustrate
two common weaknesses in conventional bioinformatic ap-
proaches for analyzing biochemical screens: statistical power
limitations and low-specificity associations.

White-Box Machine Learning Reveals Known and New
Antibiotic Mechanisms of Action
We next applied our white-box machine learning approach and
prospectively modeled metabolic network states corresponding
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to supplementation with each metabolite used in the screen. For
eachmetabolite, metabolic states were simulated by first adding
exchange reactions to the E. coli metabolic model, which
enabled uptake of each metabolite from the extracellular envi-
ronment. We then performed parsimonious flux balance analysis
(pFBA) (Lewis et al., 2010) under conditions simulating MOPS
minimal medium and optimized for the biomass objective func-
tion (Table S5). Although this approach does not explicitly model
contributions by gene expression toward changes in meta-
bolism, benchmarking studies demonstrate that principles of
growth maximization and parsimony are sufficient for accurately
predicting metabolism in defined metabolic environments (Ma-
chado and Herrgård, 2014).

For each antibiotic, metabolic pathwaymechanismswere iden-
tified by first conducting a dimension-reducing machine learning
regression task and then performing hypergeometric statistical
testing onmetabolic reactions comprising the resulting predictive
model using pathway-reaction sets curated by Ecocyc. The
measured changes in antibiotic IC50 were jointly learned on the
set of simulated metabolic network states using a multitask
elastic net (Caruana, 1997; Zou and Hastie, 2005), yielding 477
reactions predicted to alter antibiotic lethality. For each antibiotic,
reactions with coefficients whose magnitude were less than or
equal to half the SD of all coefficients were removed to exclude
spurious reactions selected by joint learning. For AMP, CIP, and
GENT, this yielded 189, 208, and 204 reactions, respectively
(Table S6). Next, hypergeometric statistics were performed on
Ecocyc-curated pathways. Of the 431 metabolic pathways

curated by Ecocyc, only 13 were found to be statistically signifi-
cant, with less than a 5%FDR for at least one antibiotic (Table S7).
Because our white-box machine learning approach yields

pathway mechanisms, we can quantify the relative contributions
of each metabolic pathway to the lethal mechanisms of each
antibiotic. We computed pathway scores for each pathway
and antibiotic by performing least-squares regression on the
changes in antibiotic IC50 and then log-transforming the average
non-zero regression coefficients for all reactions in each
pathway. Identified pathways primarily clustered into three
groups based on their pathway scores (Figure 3). One cluster
possessed central carbon metabolism pathways (‘‘superpath-
way of glycolysis, pyruvate dehydrogenase, tricarboxylic acid
[TCA], and glyoxylate bypass’’; ‘‘superpathway of glyoxylate
bypass and TCA’’; and ‘‘TCA cycle I (prokaryotic)’’) with similar
pathway directionality for AMP, CIP, and GENT (indicated by
the sign of the pathway score). These findings are consistent
with several studies demonstrating the TCA cycle to be a shared
mechanism in antibiotic lethality (Kohanski et al., 2007; Meylan
et al., 2017; Nandakumar et al., 2014) and validate the fidelity
of our white-box machine learning approach.
Interestingly, a second cluster appeared, possessing purine

biosynthesis pathways (‘‘superpathway of histidine, purine,
and pyrimidine biosynthesis’’ and ‘‘superpathway of purine nu-
cleotides de novo biosynthesis II’’) with shared directionality be-
tween AMP and CIP and opposite directionality for GENT. To our
knowledge, purine biosynthesis has not been implicated previ-
ously as amechanism of antibiotic lethality from any biochemical

Figure 2. Exogenous Metabolites Exert
Pathway-Specific Effects on Antibiotic
Lethality
(A) Overall experimental design for measuring

metabolite effects on antibiotic lethality. Overnight

cultures of E. coli MG1655 were inoculated into

MOPS minimal medium, grown to early exponen-

tial phase, and back-diluted to OD600 = 0.1. Cells

were dispensed into Biolog phenotype microarray

(PM) plates 1–4 (Bochner, 2009) with different

concentrations of ampicillin (AMP), ciprofloxacin

(CIP), or gentamicin (GENT) added. OD600

was measured after 4 h of incubation at 37"C

and shaking at 900 rpm. Antibiotic IC50 values

were estimated for each antibiotic-metabolite

combination.

(B) Antibiotic IC50 responses to metabolite sup-

plementation. Metabolically induced sensitivity

profiles differ by antibiotic, but several metabolites

commonly protect (red) or sensitize (blue) cells to

multiple antibiotics. Carbon metabolites were

screened using Biolog PMs 1 and 2, nitrogen me-

tabolites were screened using Biolog PM 3, and

phosphorus and sulfur metabolites were screened

using Biolog PM 4.

Data are represented as mean from n R 3 inde-

pendent biological replicates.
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or chemogenomic screen. To better understand these differ-
ences in pathway directionality, we examined the regression
coefficients for each reaction and computed a reaction score
by log-transforming their magnitudes. These analyses identified
early steps in the purine biosynthesis pathway as being primarily
responsible for the predicted differences for AMP and CIP from
GENT (Figure S1). These findings illustrate how white-box ma-
chine learning can reveal new mechanisms of action with high
biochemical specificity.

Purine Biosynthesis Activity Participates in Antibiotic
Lethality
Motivated by the above model-guided machine learning predic-
tions, we sought to test whether perturbations to purine biosyn-
thesis would alter antibiotic lethality. From the predictions, we hy-
pothesized that genetic deletion of enzymes involved in purine
metabolism would exert differential effects on AMP and CIP
lethality compared with GENT lethality. Indeed, E. coli mutants
deficient for purD (glycinamide ribonucleotide synthetase), purE
(N5-carboxyaminoimidazole ribonucleotidemutase),purK (5-(car-
boxyamino)imidazole ribonucleotide synthase), or purM (phos-
phoribosylformylglycinamide cyclo-ligase), early steps in purine
biosynthesis (Figure 4A), exhibited significant decreases in AMP
and CIP lethality but increased GENT lethality compared with
thewild type (Figure 4B). Similarly, biochemical inhibition of purine
biosynthesis with 6-mercaptopurine, a PurF (amidophosphoribo-
syltransferase) inhibitor, decreases AMP and CIP lethality but in-
creases GENT lethality (Figure 4C). These effects appear to be
specific to purine metabolism because genetic deletion of en-
zymes involved in pyrimidine biosynthesis did not elicit significant
differences in AMP, CIP, or GENT lethality (Figure S2A).
Cells deficient for glyA (serine hydroxymethyltransferase),

which participates in producing tetrahydrofolate co-factors
through the folate cycle, also exhibited decreased AMP and CIP
lethality but increased GENT lethality (Figure 4D). Similar pheno-
types were observed under combination treatment with trimetho-
prim, a potent biochemical inhibitor of FolA (dihydrofolate reduc-
tase) (Figure S2B), consistent with previous findings (Lobritz et al.,
2015; Ocampo et al., 2014; Paisley and Washington, 1978).
We further hypothesized that stimulation of purine biosyn-

thesis would elicit opposite effects on antibiotic lethality than in-
hibition by these genetic and biochemical perturbations. Indeed,

biochemical supplementation with the purine biosynthesis sub-
strates phosphoribosyl pyrophosphate (prpp) and glutamine
(gln) (Figure 4A, blue) led to increased AMP and CIP lethality
and decreased GENT lethality (Figure 4E). Collectively, these
data support the model-driven hypothesis that purine biosyn-
thesis participates in antibiotic lethality and demonstrate how
model-guided machine learning can provide reductive, hypothe-
sis-driven mechanistic insights into drug efficacy.

Adenine Limitation Contributes to Antibiotic Lethality
Bactericidal antibiotics significantly alter bacterial metabolism
as part of their lethality, increasing the abundance of intracellular
central carbon metabolites and disrupting the nucleotide pool
(Belenky et al., 2015; Nandakumar et al., 2014; Zampieri et al.,
2017). Nucleotide pool disruptions include rapid depletion of
free intracellular adenine, guanine, and cytosine and marked
accumulation of intracellular uracil (Figure S3). Additionally,
nucleotide biosynthesis pathways auto-regulate, with internal
feedback inhibition driven biochemically by their nucleotide
end products (Figure 5A; Lehninger et al., 2013). Based on the
predictions from our white-box machine learning approach and
the above observations, we hypothesized that purine supple-
mentation would rescue antibiotic-induced purine depletion
and, consequently, decrease the demand for purine biosyn-
thesis, reducing antibiotic lethality. Of note, supplementation
with adenine (Figure 5B, red), but not guanine, decreased anti-
biotic lethality in wild-type cells; these results suggest that
adenine limitation rather than guanine limitation drives purine
biosynthesis activity under antibiotic stress. We also hypothe-
sized that pyrimidine supplementation would inhibit pyrimidine
biosynthesis and promote purine biosynthesis activity via prpp
accumulation and, consequently, increase antibiotic lethality.
Indeed, supplementation with uracil or cytosine potentiated anti-
biotic lethality (Figure 5C, blue). Collectively, these data support
the hypothesis that purine biosynthesis participates in antibiotic
lethality and suggest that antibiotic-induced purine biosynthesis
is driven by adenine limitation.

Adenine Supplementation Reduces ATP Demand and
Central Carbon Metabolism Activity
Purine biosynthesis is energetically expensive, costing eight ATP
molecules to synthesize one adenine molecule from one glucose

Figure 3. White-Box Machine Learning Re-
veals Known and New Antibiotic Mecha-
nisms of Action
Shown are pathway scores for metabolic pathways

identified by white-box machine learning. Identified

pathways include several central carbon meta-

bolism and nucleotide biosynthesis pathways, and

these cluster into three groups based on pathway

score. Central metabolism pathways primarily

exhibit a similar pathway directionality for AMP,

CIP, and GENT, whereas purine biosynthesis

pathways exhibit a different pathway score direc-

tionality for GENT than from AMP or CIP. Pathway

scores were computed for each antibiotic by log-

transforming the average regression coefficient for

all non-zero reactions annotated in a given pathway.
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molecule (Lehninger et al., 2013). To better understand the
mechanistic basis for the observed differences in antibiotic
lethality under adenine or uracil supplementation, we examined
the simulated metabolic network states corresponding to these
perturbations (Table S5). Model simulations predicted that
adenine supplementation would decrease purine biosynthesis

and, consequently, decrease ATP utilization by nucleotide syn-
thesis and salvage reactions whereas uracil supplementation
would not (Figure 6A). Model simulations also predicted that,
as a result of these changes, overall flux through central carbon
metabolism pathways would decrease, reducing the activity
of enzymes involved in cellular respiration and oxidative

Figure 4. Purine Biosynthesis Participates in Antibiotic Lethality
(A) Purine biosynthesis pathway. Purine biosynthesis begins with phosphoribosyl pyrophosphate (prpp) and contains several ATP-consuming steps (purple).

(B) Antibiotic lethality in purine biosynthesis deletionmutants. Genetic inhibition of purine biosynthesis by purD (glycinamide ribonucleotide synthetase), purE (N5-

carboxyaminoimidazole ribonucleotide mutase), purK (5-(carboxyamino)imidazole ribonucleotide synthase), or purM (phosphoribosylformylglycinamide cyclo-

ligase) deletion decreases AMP and CIP lethality but increases GENT lethality.

(C) Antibiotic lethality following biochemical inhibition of purine biosynthesis. Biochemical inhibition of PurF (amidophosphoribosyltransferase) by 6-mercap-

topurine (6-MP) decreases AMP and CIP lethality but increases GENT lethality.

(D) Antibiotic lethality in a glyA (serine hydroxymethyltransferase) deletion mutant. Genetic inhibition of glycine (gly) and N10-formyl-tetrahydrofolate (10fthf) by

glyA deletion decreases AMP and CIP lethality but increases GENT lethality.

(E) Antibiotic lethality following enhanced purine biosynthesis. Substrate-level stimulation of purine biosynthesis with prpp and glutamine (gln) supplementation

increases AMP and CIP lethality but decreases GENT lethality.

Data are represented as mean ± SEM from n R 3 independent biological replicates.
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phosphorylation, such as succinate dehydrogenase (Figure S4).
These modeling results are consistent with previous observa-
tions that glycolytic flux is controlled by ATP demand (Koeb-
mann et al., 2002).
We tested thesemetabolic modeling predictions by quantifying

the intracellular concentrations of central carbon metabolism and
energy currency metabolites from E. coli cells grown in MOPS
minimal medium and supplemented with either adenine or uracil
(Figure 6B; Table S8). Under these conditions, cell growth did
not significantly change in the first hour of supplementation
(Figure S5A), but intracellular adenine nucleotides did accumulate
under exogenous adenine addition (Figure S5B). Consistent
with model predictions that adenine supplementation would
inhibit succinate dehydrogenase activity, intracellular succinate
increased, whereas intracellular fumarate decreased (Figure 6C).
Model simulations additionally predicted that ATP synthesis
would decrease under adenine supplementation (Figure 6D,
left). Consistent with this, we observed a modest decrease in
the adenylate energy charge (Figure 6D, right), an index for the
energy state of a cell (Chapman and Atkinson, 1977). We also
examined the relative changes in intracellular nicotinamide
adenine dinucleotides under adenine or uracil supplementation
(Figure S5C) and observed a modest decrease in the NADPH:-
NADP+ ratio, but not the NADH:NAD+ ratio, following exogenous
adenine addition (Figure 6E). Together, these results support the
model predictions that adenine supplementation decreases cen-
tral carbon metabolism activity (decreased adenylate energy
charge) and cell anabolism (decreased NADPH:NADP+ ratio)
without significantly changing cell catabolism (unchanged
NADH:NAD+ ratio) (Figure S5D; Andersen and von Meyenburg,
1977; Chapman and Atkinson, 1977).

The metabolic modeling simulations further predicted that
decreases in oxidative phosphorylation under adenine supple-
mentation lead to decreases in cellular oxygen consumption
(Figure 6F, left). We tested these modeling predictions using a
Seahorse XF analyzer andmeasured changes in the oxygen con-
sumption rate (OCR) following antibiotic treatment with or
without adenine or uracil supplementation. Antibiotic treatment
with AMP, CIP, or GENT increased the cellular oxygen consump-
tion rate (Figure 6F, black), in contrast to control conditions
(Figure S5E), supporting previous observations that cellular
respiration is important for antibiotic lethality (Gutierrez et al.,
2017; Lobritz et al., 2015). Importantly, adenine supplementation
significantly repressed changes in cellular oxygen consumption
under antibiotic treatment (Figure 6F, red), consistent with model
predictions, whereas uracil enhanced cellular oxygen consump-
tion (Figure 6F, blue). These results directly support the hypoth-
esis that central carbon metabolism activity and cellular respira-
tion are increased under antibiotic stress to satisfy the elevated
ATP demand resulting from purine biosynthesis. Collectively, our
data and simulations indicate that adenine limitation resulting
from antibiotic treatment drives purine biosynthesis, which in-
creases ATP demand, fueling the redox-associated metabolic
alterations involved in antibiotic lethality (Dwyer et al., 2014;
Figure 7).

DISCUSSION

Recent advances in high-throughput experimental technologies
and data science have stimulated considerable interest in the
potential for artificial intelligence to transform biological discov-
ery and healthcare (Gil et al., 2014; Topol, 2019; Webb, 2018; Yu

Figure 5. Adenine Limitation Contributes to Antibiotic Lethality
(A) Feedback inhibition in the purine and pyrimidine biosynthesis pathways. Purine and pyrimidine biosynthesis auto-regulate through internal feedback inhibition

by nucleotide end products.

(B) Antibiotic lethality following purine supplementation. Adenine supplementation (red) decreases AMP, CIP, and GENT lethality.

(C) Antibiotic lethality following pyrimidine supplementation. Uracil supplementation (dark blue) increases AMP, CIP, and GENT lethality.

Data are represented as mean ± SEM from n = 3 independent biological replicates.
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Figure 6. Adenine Supplementation Reduces ATP Demand and Central Carbon Metabolism Activity
(A) Metabolic modeling predictions. Adenine supplementation decreases activity through purine biosynthesis, consequently decreasing ATP utilization by purine

biosynthesis, central carbon metabolism, and oxidative phosphorylation (Figure S4) in comparison with the simulated control (CTL). E. coli metabolism under

adenine (ADE) or uracil (URA) supplementation was simulated by parsimonious flux balance analysis (pFBA) in the iJO1366 metabolic model, with exchange

reactions for adenine or uracil opened, respectively. Nucleotide biosynthesis activity was computed by summing fluxes through reactions in the purine and

pyrimidine biosynthesis subsystem (left). ATP consumption was summed across all reactions in the purine and pyrimidine biosynthesis and nucleotide salvage

pathway subsystems (center left). Central carbon metabolism activity was computed by summing fluxes through reactions in the glycolysis and TCA cycle

subsystems (center right). Oxidative phosphorylation is proxied by the succinate dehydrogenase reaction (right); additional oxidative phosphorylation reactions

are depicted in Figure S4. All fluxes were normalized by the biomass objective function.

(B) Intracellular adenine or uracil concentrations following adenine or uracil supplementation. Intracellular metabolite concentrations were measured by targeted

liquid chromatography-tandem mass spectrometry (LC-MS/MS).

(C) Intracellular succinate or fumarate concentrations following adenine or uracil supplementation. Adenine supplementation increases intracellular succinate and

decreases intracellular fumarate, consistent with model predictions for inhibited succinate dehydrogenase activity (A, right).

(D) ATP synthesis following adenine or uracil supplementation. Metabolic modeling simulations predict a decrease in ATP synthesis following adenine sup-

plementation (left), reported by the ATP synthase reaction. Metabolomic measurements of intracellular ATP, ADP, and AMP (Figure S5B) reveal a similar decrease

in adenylate energy charge following adenine supplementation (right).

(E) NADPH:NADP+ and NADH:NAD+ ratios following adenine or uracil supplementation. Metabolomic measurements of intracellular NADPH, NADP+, NADH, and

NAD+ (Figure S5C) reveal modest decreases in the NADPH:NADP+ ratio following adenine supplementation (left), indicating reduced anabolic metabolism. The

NADH:NAD+ ratio is largely unchanged (right), indicating preserved catabolic metabolism.

(F) Cellular respiration following adenine or uracil supplementation during antibiotic treatment. Metabolic modeling simulations predict a decrease in oxygen

consumption following adenine supplementation (left), reported by the oxygen exchange reaction. Adenine supplementation (red) reduces respiratory activity,

(legend continued on next page)
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et al., 2018a). Important for such pursuits will be the necessary
transition from correlation-based machine learning to causal-
ity-based ‘‘machine reasoning’’ (Bottou, 2014). Identifying
causal mechanisms by modern machine learning approaches
is challenging because of the mechanistic inaccessibility of
computationally derived black-box associations between per-
turbations and phenotypes. In this study, we show how biolog-
ical networkmodels can be utilized to overcome thismechanistic
uncertainty and help uncover biological mechanisms (Camacho
et al., 2018; Yu et al., 2018b).
Network modeling has long provided a foundation for systems

biology (Ideker et al., 2001), and researchers are now beginning
to integrate machine learning with retrospective network
modeling for improving the fidelity of genotype-to-phenotype
predictions (Ma et al., 2018). Such activities demonstrate how hi-
erarchically organized prior knowledge can deconvolve complex
biological data; however, these efforts rely on post hoc analyses
of experimental data and can only perform inductive association
of phenotypes with perturbations rather than deductive identifi-
cation of the causal mechanisms driving phenotypes. Here we
present a complementary approach, combining machine
learning with prospective network modeling to infer biological
mechanisms based on their combined information content.
We demonstrate how this approach can be integrated with

biochemical screening and applied to understanding mecha-
nisms underlying antibiotic efficacy. Antibiotics are convention-
ally understood to work by inhibiting processes involved in

bacterial cell replication (Kohanski et al., 2010). However, recent
work has shown that processes downstream of target inhibition,
including bacterial metabolism, actively participate in antibiotic
lethality (Cho et al., 2014; Dwyer et al., 2015; Gruber andWalker,
2018; Zhao and Drlica, 2014). An important knowledge gap has
been in understanding the biological mechanisms underlying
antibiotic-mediated changes in metabolism. Our results here
suggest that altered metabolism resulting from bactericidal anti-
biotic treatment is driven in part by the increased ATP required to
restore homeostasis to a disrupted nucleotide pool (Belenky
et al., 2015). It is likely that antibiotic-induced insults to the nucle-
otide pool are further exacerbated by nucleotide oxidation (Fan
et al., 2018; Foti et al., 2012; Gruber and Walker, 2018), resulting
in a positive feedback loop of increased nucleotide biosynthesis,
elevated central carbon metabolism, and toxic metabolic by-
product generation that is lethally detrimental to the cell (Fig-
ure 7). Because nucleotide analogs are commonly used as
Food and Drug Administration (FDA)-approved anticancer and
antiviral chemotherapeutics, it will be interesting to explore their
potential as antimicrobial agents or adjuvants (El Zahed and
Brown, 2018; Serpi et al., 2016).
Adenine nucleotides are important mediators of cellular ho-

meostasis (Andersen and von Meyenburg, 1977; Chapman and
Atkinson, 1977), universally coupling cellular metabolism, DNA
or RNA replication, and other physiological processes. In the
context of infection, adenylate metabolites such as ATP, ADP,
and adenosine are important components of the damage-asso-
ciated molecular patterns used by the host to activate the im-
mune system (Cekic and Linden, 2016). We observed previously
that adenine metabolites such as AMP accumulate at a site of
infection during antibiotic treatment and, consistent with our
data here, can inhibit antibiotic lethality (Yang et al., 2017b).
Given our results, it is likely that inter-patient differences in the
concentrations of extracellular nucleotides contribute to variable
antibiotic treatment outcomes for infection (Lee and Collins,
2011). Moreover, our finding that uracil potentiates antibiotic
lethality (Figures 5) suggests that pyrimidine nucleotides may
potentially be useful as antimicrobial adjuvants.
Evolution has optimized bacteria for efficient resource alloca-

tion under unstressed growth (Basan et al., 2015; Hui et al., 2015;
Scott et al., 2014), and insults to the ATP pool and other energy
currencies are sufficient for stimulating central carbon meta-
bolism (Holm et al., 2010; Koebmann et al., 2002) and sensitizing
cells to oxidative stress (Adolfsen and Brynildsen, 2015). Addi-
tionally, intracellular ATP and the adenylate energy charge are
tightly regulated across the tree of life and robustly maintained
across environmental conditions and cellular insults (Chapman
and Atkinson, 1977). Under antibiotic stress, increases to ATP
demand are likely to arise from multiple sources (Yang et al.,
2017a). Consistent with these notions, pharmacological sup-
pression of oxidative phosphorylation (Shetty and Dick, 2018)
and metabolic conditions inhibiting intracellular ATP (Shan
et al., 2017) protect cells against antibiotics, supporting a critical

whereas uracil (blue) increases respiratory activity. Changes in the oxygen consumption rate following treatment with AMP, CIP, or GENT and adenine or uracil

supplementation were measured using the Seahorse extracellular flux analyzer.

Data are represented as mean ± SEM from n = 3 independent biological replicates. Significance is reported as FDR-corrected p values in comparison with the

control: yp % 0.1, *p % 0.05, **p % 0.01, ****p % 0.0001.

Figure 7. Antibiotic-Induced Adenine Limitation Induces Purine
Biosynthesis, Increasing ATP Demand and Driving Central Carbon
Metabolism Activity
In addition to the lethal effects of inhibiting their primary targets, bactericidal

antibiotics disrupt the nucleotide pool, depleting intracellular purines and

inducing adenine limitation. Adenine limitation triggers purine biosynthesis,

increasing ATP demand, which drives increased activity through central car-

bon metabolism and cellular respiration. Toxic metabolic byproducts gener-

ated by this increased metabolic activity damage DNA and exacerbate anti-

biotic-mediated killing. Futile cycles and other stress-induced phenomena

may also elevate ATP demand.
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role for ATP dynamics in antibiotic-mediated lethality. Addition-
ally, futile cycling in cell wall synthesis and degradation was
recently reported to be a component of b-lactam lethality (Cho
et al., 2014). Our findings support a new fundamental concept
in understanding antibiotic death physiology; namely, that
stress-induced changes in ATP utilization and demand, as a ho-
meostatic response, critically drive lethal metabolic alterations.
Because antibiotic stress increases the abundance of central
carbon metabolism intermediates (Belenky et al., 2015; Nanda-
kumar et al., 2014) and TCA cycle protein expression (Babin
et al., 2017), central carbon metabolism is worth exploring as a
target for antimicrobial drug discovery (Bald et al., 2017; Murima
et al., 2014).

The growing global crisis of antibiotic resistance has created
a clear imperative for expanded efforts in antimicrobial drug
discovery and investigations into bacterial cellular death physi-
ology (Brown and Wright, 2016). As experimental and computa-
tional technologies mature, new techniques and resources are
becoming available for studying the biological mechanisms un-
derlying antibiotic responses in complex and dynamic environ-
ments (Certain et al., 2017; Dunphy and Papin, 2018; Mack
et al., 2018; Yang et al., 2017a). Although the work described
here has specifically focused on bacterial metabolism, several
other aspects of bacterial physiology are known to be relevant
to antibiotic efficacy, including bacterial stress responses, DNA
repair mechanisms, and macromolecular processes such as
transcription and translation (Dwyer et al., 2015; Gruber and
Walker, 2018; Yang et al., 2017a). Investigation into these other
physiological systems will require new and different modeling
approaches (Carrera and Covert, 2015; Ma et al., 2018; Ober-
hardt et al., 2013; Yang et al., 2018), curated knowledge bases
(Karr et al., 2012; Keseler et al., 2017; Monk et al., 2017), and
screening innovations (French et al., 2016, 2018). Integration of
such resources with machine learning could advance antibiotic
discovery by revealing novel mechanisms that can be targeted
with next-generation adjuvants, boosting our existing antibiotic
arsenal (Tyers and Wright, 2019).

White-box machine learning can be broadly extended across
diverse biological systems and, as demonstrated here, be im-
pactful for revealing drug mechanisms of action for treating hu-
man diseases. For instance, cell metabolism is increasingly
recognized as being important in cancer pathogenesis (Vander
Heiden and DeBerardinis, 2017), and histidine metabolism was
recently demonstrated to participate in the efficacy of some can-
cer therapeutics (Kanarek et al., 2018). Similar to the present
work on antibiotics, cancer drugs may be counter-screened
against a library of metabolites in human cancer cells and
coupled with network simulations using models of human meta-
bolism (Brunk et al., 2018) to discover metabolic mechanisms of
action for existing cancer drugs. Insights gained by such an
approach may help guide the design of cancer treatment regi-
mens, accounting for a tumor’s local metabolic microenviron-
ment and leveraging metabolic perturbations to optimize treat-
ment outcomes.

Moreover, our integrated screening-modeling-learning app-
roach is agnostic to the experimental datasets and network
models used to train machine learning models. NIH Common
Fund programs such as Library of Integrated Network-Based

Cellular Signatures (LINCS) and Big Data to Knowledge are
providing increasingly comprehensive measurements of cellular
physiology in response to genetic or small-molecule perturba-
tions (Keenan et al., 2018). Our white-box machine learning
approach could be extended to such datasets to reveal molecu-
lar mechanisms mediating cellular responses to biochemical
stimuli. For instance, simulations may be performed on human
signaling networks to transform LINCS small-molecule perturba-
tions into signaling network configurations that can be utilized as
input data to learn signaling mechanisms of epigenetic regula-
tion from measured chromatin signatures (Litichevskiy et al.,
2018). Similarly, prospective network simulations may be per-
formed on gene-regulatory networks to interpret CRISPR
screening perturbations (Wang et al., 2014) and reveal transcrip-
tional programs underlying screened phenotypes.
Finally, white-box machine learning will be important for real-

izing the transformative promises of translational precision med-
icine activities such as the NIH’s All of Us research program.
Simulations may be performed on biological networks curated
in databases such as BioGRID (Stark et al., 2006) to transform
human data from repositories such as the UK Biobank (Bycroft
et al., 2018) into gene-regulatory, signaling, ormetabolic network
states customized for each individual patient in a diverse popu-
lation. These customized network states may be applied as
inputs to machine learning models to identify mechanistically
interpretable biomarkers and molecular mechanisms of disease
pathogenesis from relevant clinical metadata using classification
and regression techniques. Such analyses could be impactful for
treating human disease by enabling stratified, personalized
treatment strategies based on an individual’s gene-regulatory,
signaling, or metabolic network state and by providing new tar-
gets for drug discovery programs (Yu et al., 2018a). Reaching
such endpoints will require continued high-quality characteriza-
tion of human specimens and curation of human biological net-
works. However, white-box machine learning will reward such
efforts with deep new insights that could enable truly personal-
ized medicine.
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STAR+METHODS

KEY RESOURCES TABLE

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, James J.
Collins (jimjc@mit.edu).

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

Escherichia coli K-12 MG1655 ATCC ATCC 700926

Chemicals, Peptides, and Recombinant Proteins

6-Mercaptopurine Sigma-Aldrich Cat# 852678-1G-A; CAS: 6112-76-1
13C-Glucose Cambridge Isotope Laboratories Cat# CLM-1396-1; CAS: 110187-42-3

Adenine Sigma-Aldrich Cat# A8626-5G; CAS: 73-24-5

Ampicillin Sigma-Aldrich Cat# A9518-5G; CAS: 69-52-3

Ciprofloxacin Sigma-Aldrich Cat# 17850-25G-F; CAS: 85721-33-1

Cytosine Sigma-Aldrich Cat# C3506-1G; CAS: 71-30-7

Gentamicin Sigma-Aldrich Cat# G1914-5G; CAS: 1405-41-0

Glutamine Sigma-Aldrich Cat# G8540-25G; CAS: 56-85-9

Guanine Sigma-Aldrich Cat# G11950-10G; CAS: 73-40-5

MOPS EZ Rich Defined Medium Kit Teknova Cat# M2105

MOPS Minimal Media Kit Teknova Cat# M2106

Phenotype Microarray 1 MicroPlate Biolog (Bochner, 2009) Cat# 12111

Phenotype Microarray 2 MicroPlate Biolog (Bochner, 2009) Cat# 12112

Phenotype Microarray 3 MicroPlate Biolog (Bochner, 2009) Cat# 12121

Phenotype Microarray 4 MicroPlate Biolog (Bochner, 2009) Cat# 12131

Phosphoribosyl pyrophosphate Sigma-Aldrich Cat# P8296-100MG; CAS: 108321-05-7

Thymine Sigma-Aldrich Cat# T0376-100G; CAS: 65-71-4

Trimethoprim Sigma-Aldrich Cat# T7883-5G; CAS: 738-70-5

Uracil Sigma-Aldrich Cat# U0750-100G; CAS: 66-22-8

Oligonucleotides

See Table S9 This paper N/A

Software and Algorithms

MATLAB 2018a Mathworks https://www.mathworks.com/

COBRA Toolbox v. 2.0 (Schellenberger et al., 2011) https://opencobra.github.io/cobratoolbox/

Gurobi Optimizer v. 6.0.4 Gurobi Optimization http://www.gurobi.com/

optGpSampler (Megchelenbrink et al., 2014) http://cs.ru.nl/#wmegchel/optGpSampler/

Spyder IDE v. 3.3.0 Spyder Project Contributors https://www.spyder-ide.org/

scikit-learn v. 0.17.0 (Pedregosa et al., 2011) https://scikit-learn.org/

Ecocyc v. 22.0 (Keseler et al., 2017) https://ecocyc.org/

Prism v. 8.0.2 GraphPad https://www.graphpad.com/

AB SCIEX MultiQuant v. 3.0.1 SCIEX https://sciex.com/products/software/

multiquant-software

Amelia II v. 1.7.4 (Honaker et al., 2011) https://cran.r-project.org/web/packages/Amelia/

index.html

LMGene v. 3.3 (Lu et al., 2008) http://www.bioconductor.org/packages/release/bioc/

html/LMGene.html
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Bacterial Strains, Media, Growth Conditions, Reagents
Escherichia coli strain K-12 MG1655 (ATCC 700926) was used for all experiments in this study. For metabolite supplementation ex-
periments, cells were cultured in MOPSminimal mediumwith 0.2% glucose (Teknova; Hollister, CA). For experiments involving gene
deletions, cells were cultured in MOPS EZ Rich defined medium (Teknova). For all experiments, cells were grown at 37"C either on a
rotating shaker at 300 rpm in baffled flasks or 14 mL test tubes or on a rotating shaker at 900 rpm in Biolog 96-well phenotype micro-
arrays (Bochner, 2009) (Biolog; Hayward, CA). All experiments were performed with n R 3 biological replicates from independent
overnight cultures. Uniformly labeled 13C glucose was purchased from Cambridge Isotope Laboratories, Inc. (Tewksbury, MA).
LC-MS reagents were purchased from Honeywell Burdick & Jackson! (Muskegon, MI) and Sigma-Aldrich (St. Louis, MO).

METHOD DETAILS

Metabolite Screen and IC50 Determination
An overnight culture of E. coli cells in MOPS minimal medium was diluted 1:500 and grown to mid-exponential phase at 37"C with
300 rpm shaking in 2 L baffled flasks. 13 mL cultures were then back-diluted to OD600 = 0.1 and dispensed into 14 mL test tubes
containing 100x concentrated AMP, CIP or GENT over the following concentration gradients: for AMP, 10 mg/mL, 1 mg/mL
and 1.5-fold dilutions from 20 – 0.35 mg/mL; for CIP, 10 mg/mL, 1 mg/mL and 1.5-fold dilutions from 100 – 0.4 ng/mL; for GENT,
10 mg/mL, 1 mg/mL and 1.5-fold dilutions from 200 – 2.6 ng/mL. 100 mL from each antibiotic-treated subculture was dispensed
into each well of a Biolog PM 1-4 compound plate. Plates were sealed with breathable membranes and incubated in a 37"C shaking
incubator with 900 rpm shaking. After 4 h incubation, OD600 was measured on a SpectraMax M5 Microplate Reader (Molecular De-
vices; San Jose, CA). IC50s were estimated from each set of n R 3 independent biological replicates by fitting logistic functions to
each set of OD600 measurements for each well in MATLAB (Mathworks; Natick, MA). In the case of CIP, some metabolite conditions
exhibited a biphasic dose-response. For those conditions, a logistic function was fit to only the phase at the lower concentration.

Gene Knockout Strain Construction
E. coli DglyA, DpurD, DpurE, DpurK, DpurM, DpyrC and DpyrE gene deletion mutants were constructed by P1 phage transduction
using the Keio collection (Baba et al., 2006), as previously described (Gutierrez et al., 2017). Briefly, P1 phage lysates corresponding
to each gene deletion were produced by incubating overnight cultures of Keio donor strains with P1 phage. For each gene deletion,
an overnight culture of E. coliMG1655 was pelleted and resuspended in a 10 mMMgCl2 and 5mMCaCl2 salt solution in a 15mL test
tube, and then incubated with the corresponding P1 phage at 37"C for 30 min. Media containing 1 M sodium citrate was added to
each tube and incubated at 37"C for an additional 60 min in a 300 rpm shaking incubator. Cells were pelleted, resuspended on
fresh media, and then plated on kanamycin-selective agar plates containing 5 mM sodium citrate and incubated overnight at
37"C. Colonies were selected from each plate and their kanamycin-resistance cassettes cured by transducing pCP20 plasmid
with electroporation, inducing recombination by overnight growth at 43"C, and then screening resulting colonies for genomic recom-
bination and plasmid loss on kanamycin- and ampicillin-selective agar plates. Overnight cultures of each knockout strain were
checked for accuracy by PCR amplification and gel electrophoresis with custom oligonucleotides (Table S9).

Time-Kill Experiments
Time-kill experiments were performed as previously described (Dwyer et al., 2014). An overnight culture of E. coli cells in MOPS
minimal medium was diluted 1:500 and grown to mid-exponential phase at 37"C with 300 rpm shaking in 125 mL baffled flasks.
1 mL cultures were then back-diluted to OD600 = 0.1, dispensed into 14 mL test tubes and treated with AMP, CIP or GENT, with
biochemical supplementation where indicated. For all metabolite supplementation experiments in minimal media, time-kill experi-
ments were performed using 4 mg/mL AMP, 16 ng/mL CIP or 48 ng/mL GENT. For all gene knockout experiments in rich media,
time-kill experiments were performed using 4 mg/mL AMP, 16 ng/mL CIP or 96 ng/mL GENT. Hourly samples were collected and
serially diluted in PBS for colony enumeration 24 h later.

Intracellular Metabolite Quantification
Intracellular metabolites quantified on an AB SCIEX Qtrap! 5500 mass spectrometer (AB SCIEX; Framingham, MA), as previously
described (McCloskey et al., 2018), and processed using in house scripts. An overnight culture of E. coli cells in MOPS minimal me-
dium was diluted 1:500 and grown to mid-exponential phase at 37"Cwith 300 rpm shaking in 1 L baffled flasks. 25 mL cultures were
then back-diluted to OD600 = 0.1, dispensed into 250 mL baffled flasks and treated with either 1 mM adenine, 1 mM uracil or a non-
supplemented control. Samples were collected 1 hr after supplementation, and aliquots with biomass equivalents to 10 mL of cell
culture at OD600 = 0.1 were subjected to metabolite extraction using a 40:40:20 mixture of acetonitrile, methanol and LC-MS grade
water. Uniformly labeled 13C-standards were generated by growing E. coli in uniformly labeled Glucose M9minimal media in aerated
shake flasks, as previously described (McCloskey et al., 2014). Calibration mixes of standards were split across several mixes,
aliquoted, and lyophilized to dryness. All samples and calibrators were equally spiked with the same internal standards.
Samples were quantified using isotope-dependent mass spectrometry. Calibration curves were run before and after all biological
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and analytical replicates. Consistency of quantification between calibration curves was checked by running a Quality Control sample
composed of all biological replicates. Values reported are derived from the average of the biological triplicates, analyzed in duplicate
(n = 6).

Oxygen Consumption Rate Quantification
Bacterial respiratory activity was quantified using the Seahorse XFe96 Extracellular Flux Analyzer (Seahorse Bioscience; North
Billerica, MA), as previously described (Dwyer et al., 2014; Lobritz et al., 2015). XF Cell Culture Microplates were pre-coated with
100 ng/mL poly-D-lysine. An overnight culture of E. coli cells in MOPS minimal medium was diluted 1:500 and grown to mid-expo-
nential phase at 37"C with 300 rpm shaking in 125 mL baffled flasks. Cells were back-diluted to OD600 = 0.01 and 90 mL diluted cells
were dispensed to each well of the coated XF Microplates. Microplates were centrifuged for 10 min at 4,000 rpm and an additional
90 mL fresh media with or without 1 mM adenine or uracil was added to each well. Antibiotics were added to injection ports and
measurements taken at 5 min intervals with 2.5 min measurements cycles and 2.5 min mixing.

QUANTIFICATION AND STATISTICAL ANALYSIS

Hierarchical Clustering
Hierarchical clustering for the measured antibiotic IC50s and identified pathways was performed in MATLAB using the standardized
euclidean distance metric.

Metabolite Set Enrichment Analysis
Metabolite Set Enrichment Analysis was performed in Ecocyc (v. 22.0) (Keseler et al., 2017). A SmartTables was created comprised of
metabolites eliciting aR 2-fold change in IC50 for at least one antibiotic (Table S4). Pathways were identified using the ‘‘Enrichment’’
analysis type. The Fisher Exact test was performed for each enrichment analysis with false discovery rate (FDR) correction by the
Benjamini-Hochberg method.

Genome-Scale Metabolic Modeling
Metabolic simulations were performed using the COBRA Toolbox v. 2.0 (Schellenberger et al., 2011) in MATLAB and Gurobi Opti-
mizer v. 6.0.4 (Gurobi Optimization; Beaverton, OR). Reversible reactions in the iJO1366 E. coli model (Orth et al., 2011) were re-
placed with pairs of forward and backward reactions. In order to simulate growth in MOPS minimal medium, reaction bounds
from the exchange reactions corresponding to each metabolite present in MOPS minimal medium were set to a value of ‘1,000’,
to permit uptake. Reaction bounds for oxygen exchange, glucose exchange and cobalamin exchange were as set to values of
‘18.50, ‘10’ and ‘0.1’, respectively, as previously described (Orth et al., 2011). For each metabolite screening condition, additional
exchange reactions were added to represent supplementation with each metabolite on the Biolog phenotype microarray plates
(Table S1), with reaction bounds set to ‘1,000’ to permit uptake. Parsimonious flux balance analysis (Lewis et al., 2010) was per-
formed on each metabolite condition-specific model 10,000 times with sampling by optGpSampler (Megchelenbrink et al., 2014).
For each reaction in the condition-specific models, the mean flux across all 10,000 samples was computed and used to represent
flux in each condition.

Multitask Elastic Net Regularization
Metabolic reactions for each antibiotic were selected using a two-stagemultitask elastic net regularization (Yuan et al., 2016; Zou and
Hastie, 2005) in the open-source Spyder IDE v. 3.3.0 (Spyder Project Contributors) Python environment. First, IC50s from each
screening condition were normalized by their on-plate controls and log2-transformed. Multitask elastic net was jointly performed
on the transformed antibiotic IC50s and the simulated metabolic states using the MultitaskElasticNetCV function in the scikit-learn
toolbox v. 0.17.0 (Pedregosa et al., 2011) with 50-fold cross-validation, 1e4 max iterations and tolerance of 1e-6. Second, for
each antibiotic, the standard deviation of elastic net coefficients was computed. Reactions whose coefficients possessedmagnitude
less than half the standard deviation were filtered and removed. Exchange and transport reactions were excluded from this analysis.

Hypergeometric Pathway Identification
Pathways mechanisms were identified by performing hypergeometric statistical testing on metabolic pathways curated in Ecocyc
(v. 22.0) (Keseler et al., 2017). For each antibiotic, reactions selected by multitask elastic net regularization were converted to their
Ecocyc counterparts and hypergeometric p values were computed for each pathway-reaction set in Spyder. For each antibiotic-
pathway combination, FDR statistics were estimated using the Benjamini-Hochberg method. Pathways that exhibited p % 0.05
and q % 0.05 for at least one antibiotic were selected.

Pathway and Reaction Score Computation
For each antibiotic, log2-transformed IC50s were regressed on the reactions selected by multitask elastic net by linear squares using
scikit-learn in Spyder. For each pathway, pathway scores were computed by first computing the average of the non-zero regression
coefficients for all reactions in each pathway. Themagnitudes for these pathway scores were then log10-transformed and normalized
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by the largest magnitude of all pathway scores. Reaction scores were computed by taking the log10-transformation of each regres-
sion coefficient for each antibiotic. The magnitudes of these reaction scores were then normalized by the largest magnitude of all
reaction scores.

Metabolite Quantification
Metabolite concentrations were estimated from LC-MS/MS peak heights using previously generated calibration curves. Metabolites
found to have a quantifiable variability (RSDR 50%) in the Quality Control samples or possessing individual components with a RSD
R 80% were excluded from analysis. Metabolites in blanks with a concentration greater than 80% of that found in the biological
samples were similarly excluded. Missing values were imputed by bootstrapping using the R package Amelia II (v. 1.7.4, 1,000 im-
putations) (Honaker et al., 2011). Remaining missing values were approximated as one-half the lower limit of quantification for the
metabolite normalized to the biomass of the sample. Intracellular metabolite concentrations were calculated based on an estimated
cell density of 7,107 CFU/mL at OD600 = 0.1 (Figure 5) and an estimated cell volume of 1.3 fL for non-stressed exponential phase
E. coli cells (Milo and Phillips, 2016).

Statistical Analysis
Statistical significance testing was performed in Prism v8.0.2 (GraphPad; San Diego, CA). One-way ANOVA was performed on intra-
cellular ATP measurements. Reported p values reflect false-discovery correction by the Holm-!Sı́dák multiple comparisons test, with
comparisons only between adenine or uracil supplementation with control. Although ANOVA is generally robust against lack of
normality in the data, statistical tests were not specifically performed to determine if all of the assumptions of ANOVA had been met.
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Supplemental Figures

Figure S1. Antibiotic Reaction Scores for Purine Biosynthesis, Related to Figures 3 and 4
Differences in purine biosynthesis pathway scores for ampicillin (AMP) and ciprofloxacin (CIP) from gentamicin (GENT) are primarily explained by early reactions

in the purine biosynthesis pathway (gray box).



Figure S2. Purine Biosynthesis Participates in Antibiotic Lethality, Related to Figure 4
(A) Antibiotic lethality in pyrimidine biosynthesis deletion mutants. Genetic inhibition of pyrimidine biosynthesis by pyrC (dihydroorotase) or pyrE (orotate

phosphoribosyltransferase) deletion does not significantly change ampicillin (AMP), ciprofloxacin (CIP) or gentamicin (GENT) lethality.

(B) Biochemical disruption of the folate cycle by trimethoprim (TRI) decreases AMP and CIP lethality, but increases GENT lethality.

Data are represented as mean ± SEM from n = 3 independent biological replicates.



Figure S3. Antibiotic Stress Rapidly Disrupts Intracellular Nucleotide Pools, Related to Figure 5
Purine nucleic acid bases (A: adenine, G: guanine) are depleted (red), while pyrimidine nucleic acid bases (C: cytosine, T: thymine, U: uracil) accumulate (blue) in

E. coli cells treated with ampicillin (AMP), norfloxacin (NOR) or kanamycin (KAN). Data reanalyzed from Belenky et al., 2015. Data are represented asmean ± SEM

from n = 3 independent biological replicates.



Figure S4. Model Simulations Predict Exogenous Adenine Supplementation Decreases Oxidative Phosphorylation, Related to Figure 6



Figure S5. Adenine or Uracil Supplementation Alters Energy Currencies and Central Carbon Metabolism, Related to Figure 6
(A) Exogenous adenine (red) or uracil (blue) supplementation does not significantly alter unstressed growth in MOPS minimal medium.

(B) Intracellular AMP, ADP and ATP concentrations following adenine (ADE) or uracil (URA) supplementation.

(C) Relative intracellular NADPH, NADP+, NADH and NAD+ concentrations following adenine or uracil supplementation.

(D) Intracellular tricarboxylic acid cycle metabolite concentrations following adenine or uracil supplementation.

(E) Cellular respiration following adenine or uracil supplementation in the absence of antibiotic treatment.

Data are represented asmean ± SEM from nR 3 independent biological replicates. Significance reported as FDR-corrected p values in comparison with control:

y: p % 0.1, *p % 0.05, **p % 0.01, ***p % 0.001.
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