
to be required for endogenous twist-1 
expression. Nevertheless, further evi-
dence is presented for a feedback loop 
between PPARδ and twist-1: PPARδ, 
but not PPARα or PPARγ, bind to the 
twist-1 promoter and direct twist-1 
expression in brown adipocytes. Given 
that PPARδ acts as a lipid sensor, these 
findings raise the possibility that nutri-
ents may influence this transcriptional 
network. Additionally, energy sen-
sors such as the AMP-activated pro-
tein kinase (AMPK) may lie upstream 
of PPARδ. AMPK activators increase 
expression of PGC-1α target genes, 
and siRNAs against either PPARδ or 
AMPK subunits block the effects of 
PPARδ agonists on fatty acid oxida-
tion (Kramer et al., 2007). However, any 
requirement for AMPK signaling in the 
PPARδ-inducible, negative feedback 
loop of twist-1 on PGC-1α transcrip-
tional regulation is speculative.

Given the unexpected evidence for 
brown adipose tissue in humans (Ned-
ergaard et al., 2007), the role of twist-1 

in mitochondrial biogenesis and ther-
mogenic programs in brown adipose tis-
sue may have important implications for 
human obesity. Bearing in mind that the 
physiological role of brown fat in adult 
humans remains unclear, do alterations 
in the twist-1 protein level influence 
PGC1-α-dependent gene expression 
and metabolism in humans? Evidence 
from clinical genetics implicates twist-1 
haploinsufficiency in Saethre-Chotzen 
syndrome. Hence, caution should be 
exercised when considering pharma-
cological approaches to target twist-1 
expression in humans. Furthermore, the 
role of twist-1 in other tissues express-
ing PPARδ and PGC1-α, such as cardiac 
and oxidative skeletal muscle, should be 
considered to fully appreciate whether 
twist-1 has a role beyond that described 
for brown adipose tissue. The identifica-
tion of twist-1 as a regulator of programs 
in brown adipose tissue reveals new 
insight into the mechanisms controlling 
cellular and whole-body energy homeo-
stasis in obesity.
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Integrating synthetic biology and systems biology efforts can advance our understanding of 
biomolecular systems. This is illustrated in this issue by Cantone et al. (2009), who construct a 
synthetic gene network in yeast and use it to assess and benchmark systems biology approaches 
for reverse engineering endogenous gene networks.
24 Cell 137, April 3, 2009 ©2009 Elsevier Inc.
One of the cornerstones of systems 
biology research is the identification 
of network structures from experimen-
tal data through reverse engineering 
(inference) approaches. In many ways, 
those of us working in this area are like 
the five blind men confronted with an 
elephant—we are not sure what the 
actual biomolecular networks look like, 
and we lack accurate benchmarks for 
our reverse-engineering approaches. 
marked their approaches, that is, 
assessed their relative performances 
using a common standard.

There is much interest in both sys-
tems biology, that is, the use of inte-
grated experimental and computational 
approaches for studying endogenous 
biomolecular networks, and synthetic 
biology, that is, the use of engineering 
techniques to model, design, and con-
struct artificial biomolecular networks. 
There is an old story about five blind 
men who are presented with an ele-
phant and asked to identify what is 
before them. Each touches only a por-
tion of the animal, and offer guesses 
ranging from a rope to a tree branch. 
It is likely that the men would have 
done better had they first practiced on 
another large animal, such as a camel, 
knowing a priori what was before them. 
In that way, they could have bench-



figure 1. Benchmarks for Reverse engineering of networks
The development of a gold-standard synthetic gene circuit allows for the validation of network inference 
algorithms. The methodology involves collecting expression profiles for the synthetic circuit (e.g., from 
drug profiles, and overexpression or knockout experiments) and applying inference algorithms to these 
data. As the topology of the gold-standard circuit is known a priori, one can assess the validity and power 
of the inference tools by comparing the predicted networks to the known network.
C

(Margolin et al., 2006; Faith et al., 2007). 
Methodologies based on ODEs strive 
to uncover network structures by esti-
mating the parameters in a differential 
equation model. In contrast, Bayesian 
network methods reconstruct network 
architectures on the basis of probabilis-
tic graphical models, and information-
theoretic approaches rely on extracting 
the network features on the basis of the 
probability that a pair of genes is coex-
pressed across a data set. Each of these 
strategies has its own benefits and pit-
falls, which are described in the exten-
sive literature on network inference (e.g., 
see Bonneau, 2008).

The authors found that the best per-
formers on their synthetic gene net-
work were the ODE-based methods and 
Bayesian network methods, with the 
former being superior in cases where 
known genetic perturbations are used 
in the data-generating experiments. 
Information-theoretic methods did not 
perform well on the small synthetic cir-
cuit; these approaches were hindered 
by their inability to infer the directionality 
of interactions. However, as the authors 
note, information-theoretic approaches 
(Margolin et al., 2006; Faith et al., 2007) 
are quite effective for studying large 
networks, given that they can infer undi-
rected gene-gene interactions from a 
relatively small amount of expression 
data.

Network-driven biological research 
has illustrated the power of systems 
biology, e.g., for uncovering the mode 
of action of drugs (di Bernardo et al., 
2005; Kohanski et al., 2008). However, 
systems biology approaches that are 
not appropriately validated or bench-
marked can lead to erroneous results 
and misguided experiments, particu-
larly given the complexity of the sys-
tems being considered and the noisy, 
limited nature of typical experimental 
data sets. The work by Cantone and 
colleagues is an important step forward 
in the quest for developing accurate, 
effective systems biology approaches 
for network inference.

So, are we done? Can we now reli-
ably infer the elephant-like biomolecular 
networks that are out there? Well, one 
has to question whether small networks 
of the type considered by Cantone and 
 coworkers are all that is needed for a 
each gene controlled the transcription of 
at least one other gene in the network.

The authors were careful to select pro-
moter/gene pairs that belong to distinct, 
nonredundant pathways, so as to effec-
tively eliminate the influences that other 
genes in the yeast genome could have on 
the synthetic network. They also coupled 
the network to a galactose-sensing pro-
moter (GAL1-10) and used a background 
yeast strain that does not express GAL10, 
enabling them to switch the network into 
an “on” or “off” state depending on the 
available carbon source (galactose or 
glucose, respectively). These design fea-
tures allowed for the careful collection of 
data that relate solely to the function-
ing of the network and, therefore, could 
provide in vivo measurements of gene 
expression that can be used for network 
inference or modeling applications.

To investigate the applicability of their 
gold standard platform for systems biol-
ogy (Figure 1), Cantone et al. collected 
time series and steady-state expression 
data from their network after multiple 
perturbations, such as overexpression 
of each of the five network genes, one 
by one. They then compared the effec-
tiveness of different reverse-engineering 
algorithms on the collected expres-
sion data. They considered inference 
methods based on ordinary differential 
equations or ODEs (Gardner et al., 2003; 
Lorenz et al., 2009), Bayesian networks 
(Yu et al., 2004), and information theory 
In this issue, Cantone et al. (2009) 
address this problem and present us 
with the systems biology equivalent of 
a camel. Specifically, they develop a 
synthetic gene network in the budding 
yeast Saccharomyces cerevisiae that 
they use as an in vivo gold standard to 
assess and benchmark network infer-
ence approaches.

Until now, the available benchmarks 
have been in silico, essentially compu-
tational models of gene networks (e.g., 
see Camacho et al., 2007). Although 
these models offer desired levels of 
control and robustness and constitute 
a gold standard in their own right, they 
lack the full intricacies of in vivo biolog-
ical networks. The system presented 
by Cantone et al. is an important step 
toward the development of a compre-
hensive, biology-driven and synthetic 
biology-controlled, standardized plat-
form for validating reverse-engineering 
approaches.

The authors generated a complex gene 
regulatory network, with an intricate net-
work structure (topology), by carefully 
selecting a small number of yeast genes 
and integrating these with promoter 
sequences that enabled a variety of 
regulatory interactions. The network was 
composed of five genes (ASH1, CBF1, 
GAL4, GAL80, and SWI5, all transcription 
factors), and included multiple feedback 
loops and protein-protein regulatory inter-
actions. The system was designed so that 
ell 137, April 3, 2009 ©2009 Elsevier Inc. 25



comprehensive assessment of inference 
algorithms. As the authors point out, infor-
mation-theoretic approaches are not ideal 
for reconstructing small-scale networks, 
but seem to do quite well for reconstruct-
ing large-scale networks. An obvious 
development along these lines would be 
to increase the size and complexity of the 
gold-standard synthetic gene network by 
including additional genes and interac-
tions. Ideally, it would be useful to have a 
library of diverse, gold-standard synthetic 
gene networks, including ones consist-
ing of 25–100 genes and varied network 
architectures. As DNA synthesis capa-
bilities become less error prone and more 
cost effective, creating such a library will 
become feasible.

It would also be useful to expand the 
gold-standard synthetic networks to 
include additional components, such as 
small RNAs and microRNAs, and to take 
account of pre- and posttranscriptional 
26 Cell 137, April 3, 2009 ©2009 Elsevier Inc

Parkinson’s disease is a neurodegenera-
tive disorder, characterized by tremors 
and rigidity, that results from the progres-
sive loss of dopamine-producing neurons 
in the substantia nigra of the brain. Among 
the genetic factors contributing to the 
disease are rare mutations in the orphan 
nuclear receptor Nurr1 (also known as 
NR4A2) that are associated with a familial 
late-onset form of the disease (Le et al., 
2003). Prior work on Nurr1 is consistent 
with the view that this protein might medi-
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Mutations in the gene encoding
form of Parkinson’s disease. By 
provide evidence that Nurr1 pro
expression in astrocytes and mic
and translational modifications. These 
developments would enable one to con-
sider multiple levels of regulation and to 
integrate different types of data in net-
work inference studies. These enhanced 
capabilities could lead to the develop-
ment of new systems biology techniques 
and analysis tools.

The work by Cantone and colleagues 
nicely illustrates the value of integrat-
ing the bottom-up network construction 
approaches of synthetic biology with the 
top-down network inference methodolo-
gies of systems biology. These efforts 
will be applicable to many different 
organisms, and may one day enable us 
to reverse engineer the gene regulatory 
networks that make up an elephant.
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neurotoxic challenge than those of wild-
type mice (Le et al., 1999). In this issue, 
Saijo et al. (2009) present evidence for an 
unexpected mechanism by which Nurr1 
mediates neuroprotection. These authors 
show that mouse Nurr1 acts in microglia 
and astrocytes to suppress the produc-
tion of inflammatory mediators that trig-
ger the death of dopaminergic neurons.

The NR4A subfamily of nuclear recep-
tors consists of three members: NR4A1, 
NR4A2, and NR4A3 (also known as Nur77, 
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