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SUMMARY

Somatic cell reprogramming, directed differentiation
of pluripotent stem cells, and direct conversions be-
tween differentiated cell lineages represent power-
ful approaches to engineer cells for research and
regenerative medicine. We have developed CellNet,
a network biology platform that more accurately
assesses the fidelity of cellular engineering than ex-
isting methodologies and generates hypotheses for
improving cell derivations. Analyzing expression
data from 56 published reports, we found that cells
derived via directed differentiation more closely
resemble their in vivo counterparts than products
of direct conversion, as reflected by the establish-
ment of target cell-type gene regulatory networks
(GRNs). Furthermore, we discovered that directly
converted cells fail to adequately silence expression
programs of the starting population and that the
establishment of unintended GRNs is common to
virtually every cellular engineering paradigm. CellNet
provides a platform for quantifying how closely
engineered cell populations resemble their target
cell type and a rational strategy to guide enhanced
cellular engineering.

INTRODUCTION

Transitions between cellular states are fundamental to develop-

ment, physiology, and pathology. Directing state transitions

in vitro is a current preoccupation of stem cell biology, as the

derived cells can be used to investigate otherwise inaccessible

cell types in development and disease, for drug screening, and
for regenerative cell therapies. Dramatic cell-state transitions

have been achieved in vitro and in vivo through the enforced

expression of transcription factors. For example, differentiated

somatic cells—fibroblasts (Takahashi and Yamanaka, 2006),

keratinocytes (Aasen et al., 2008), peripheral blood (Loh et al.,

2010; Staerk et al., 2010), and neural progenitors (Kim et al.,

2009)—have been reprogrammed to pluripotent stem cells;

fibroblasts have been converted to cells resembling myoblasts

(Davis et al., 1987), motor neurons (Vierbuchen et al., 2010), car-

diomyocytes (Ieda et al., 2010), hepatocytes (Huang et al., 2011;

Sekiya and Suzuki, 2011), and blood progenitors (Szabo et al.,

2010); B cells have been converted to macrophage-like cells

(Xie et al., 2004); and exocrine pancreas cells have been con-

verted to insulin-producing beta cells (Zhou et al., 2008). Further-

more, pluripotent stem cells can be coaxed to specific lineages

through a combination of defined growth conditions and ectopic

gene expression (Murry and Keller, 2008).

The widespread practice of cellular engineering has raised

critical questions about the relationship of the derived cells to

their native counterparts. To what extent does a cell population

engineered in vitro resemble the corresponding target cell or

tissue in both molecular and functional terms? While functional

complementation via transplantation in live animals has been

used to assess the ability of engineered cells to mimic the phys-

iology of their native counterparts, such experiments are techni-

cally challenging, lack quantitative rigor, and provide limited

insights when judging human tissue function in animal hosts.

The molecular similarity of engineered populations is typically

assessed by semiquantitative PCR, array-based expression

profiling, or RNA sequencing followed by simple clustering

analysis. However, such global analyses do not provide an intu-

itive or a quantitative means for diagnosing the deficiencies of

engineered cells, nor do they provide a systematic approach to

prioritize interventions to improve derivations of the desired

populations.
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Figure 1. Construction and Validation of CellNet

(A) CellNet was designed to analyze gene expression profiles of mouse and human cell populations engineered by reprogramming to pluripotency, by direct

conversion among somatic cell types, or by directed differentiation of pluripotent stem cells. CellNet can perform three types of analysis. First, CellNet calculates

the probability that query samples express C/T-specific GRN genes to an extent that is indistinguishable from each cell and tissue type in the training data set.

Second, CellNet measures the extent to which C/T GRNs are established in query samples relative to the corresponding C/T in the training data. Third, CellNet

scores transcriptional regulators according to the likelihood that changing their expression will result in improved GRN establishment.

(B) CellNet is based on C/T-specific GRNs. C/T-specific GRNs were determined by first reconstructing a single GRN from a diverse panel of cell types and tissues

and perturbations (i). Second, lower performing edges from the GRN were removed based on a comparison to a set of Gold Standard of regulatory relationships

(ii). Finally, C/T-specific GRNs were identified by splitting the GRN into densely interconnected subnetworks (iii) followed by attribution to C/Ts based on gene set

enrichment analysis (iv).

(C) Classification heatmap of an independent mouse validation data set. Binary classifiers were trained for each C/T using the C/T-specific GRN genes as

predictors. Each row represents a C/T classifier, and each column represents a validation array. Higher classification scores indicate a higher probability that a

(legend continued on next page)
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Here, we provide a network biology platform, CellNet, which

assesses the fidelity of cell fate conversions and generates spe-

cific hypotheses aimed at improving derived cell populations.

Our platform includes both novel and previously described com-

ponents, which we outline below. We describe the construction

of this platform for human and mouse cell and tissue types and

use it to assess the results of 56 published attempts at reprog-

ramming to pluripotency (most of which use the canonical

reprogramming factors Oct4, Sox2, Klf4, and Myc), directed

differentiation, and direct conversion of somatic cells. On the

basis of these analyses, we have documented quantitatively

that reprogramming is the most complete and successful of

the various cell fate conversions; indeed, CellNet confirms that

iPSC are virtually indistinguishable from ES cells in their faithful

establishment of gene regulatory networks (GRNs). Further, we

show that neurons and cardiomyocytes derived by directed dif-

ferentiation of pluripotent stem cells more completely establish

the target tissue- and cell-type GRNs than do neurons and car-

diomyocytes directly converted from fibroblasts. Moreover,

analysis of cardiomyocytes converted from cardiac fibroblasts

in situ demonstrates that the in vivo environment provides selec-

tive and/or inductive signals that more completely establish

heart GRNs. We also demonstrate that GRNs of the starting

cell type are detectable in purified populations of both directed

differentiation and in direct conversion experiments, and we

show that the establishment of unintended GRNs is common

to virtually every cellular engineering paradigm. Thus CellNet

provides a platform for assessing and improving efforts at

cellular engineering.

RESULTS

CellNet Construction and Validation
CellNet is predicated on the discovery of GRNs, which govern

the steady-state expression program of a particular cell type

as well as its transcriptional responses to environment, disease,

and age. GRNs thus act as major molecular determinants of cell-

type identity (Davidson and Erwin, 2006). We reasoned that

measuring the establishment of cell and tissue (C/T)-specific

GRNs in engineered populations would serve as both a robust

metric of cellular identity and a tool to identify aberrant regulatory

nodes. We designed CellNet to query gene expression profiles

for the extent to which C/T GRNs are established, to classify

input samples by their similarity to target cells and tissues, and

to score transcriptional regulators according to their likelihood

of improving the engineered population (Figure 1A).
query sample expresses the C/T GRN genes at a level indistinguishable from the s

source of the validation samples at a false positive rate % 5%.

(D) Precision and sensitivity curves of CellNet (blue) and hierarchical clustering (red

positives divided by the number of positive calls. Sensitivity is the number of true p

the average of all mouse C/T classifiers computed across a range of classificatio

(E) Using a gene expression profile to quantify GRN establishment or status. Ce

distributions of gene expression in the C/T based on the training data and integra

connectivity of each gene to arrive at GRN status, which is normalized to the GR

(F) Combining gene expression with GRNs to prioritize transcriptional regulators

selected target C/T, CellNet computes a network influence score, which scores e

dysregulation of target genes and the regulator, weighted by the expression of t

See Figure S1.
In the ideal case, a comprehensive catalog of GRNs would

be available from chromatin immunoprecipitation followed by

sequencing (ChIP-seq) for all cell types and all transcription

factors, and GRN establishment in engineered cells would be

quantified by comparing their global transcription factor binding

profiles to the reference set. Such data are currently unavailable,

but over the past decade methods to reconstruct GRNs using

genome-wide expression data have matured substantially (Mar-

bach et al., 2012), and expression repositories have accumu-

lated a wide array of biological perturbations (Lukk et al., 2010;

Rung and Brazma, 2013), which are needed for accurate GRN

reconstruction.

Wedevelopedapipeline to reconstructGRNsusing3,419pub-

licly available gene expression profiles of diverse cell types and

tissues, including embryonic stem cells, ovary, testis, neurons,

glia, skin, heart, skeletal muscle, fibroblasts, white adipose, kid-

ney, endothelial cells, hematopoietic stem and progenitor cells

(HSPC),Bcells, T cells,macrophages, lung, liver, pancreas, small

intestine, and colon (Figure 1B). We used the Affymetrix 430.2

and theHG133plus 2platforms to reconstructmouseand human

GRNs, respectively, because at present they represent the most

comprehensive data set of cells and tissues and network pertur-

bations. We performed a census of Gene Expression Omnibus

(GEO) to determine the number of arrays that profiled well-anno-

tated cell and tissue types. We found 20 mouse cell and tissue

types that were represented by at least 100 expression profiles

and 16 human cell and tissue types represented by at least 60

profiles (Table S1), as the performance of GRNs reconstructed

from fewer than 60 profiles degrades substantially (Faith et al.,

2007). To reconstructGRNs,we first randomly selected an equiv-

alent number of profiles from eachGEO accession and eachC/T,

ensuring that each C/T was represented by a minimum of ten

distinct conditions, which act as perturbations that enable GRN

reconstruction. After integrating these samples into a single

data set, we reconstructed GRNs using a modified version of

the context likelihood of relatedness (CLR) algorithm, which

uses a context-specific measure of correlation significance to

infer direct regulatory relationships between transcriptional regu-

lators and target genes (Faith et al., 2007).We first appliedCLR to

the complete data set to find regulatory relationships that span

most tissues and cell types. Then, we usedCLR to find regulatory

relationships that are specific to cell and tissue types of common

developmental origins, relationships that can be obscured when

reconstructing GRNs from all C/Ts simultaneously (Novershtern

et al., 2011). Then we combined the results into a single GRN

per cell and tissue type.
ame C/T in the training data. (Right) The sensitivity to accurately determine the

) basedC/T classifiers on the validation data set. Precision is the number of true

ositives divided by the sum of the true positives and false negatives. Shown are

n scores (left to right).

llNet compares the expression of C/T GRN genes in the query sample to the

tes this information with the importance of each gene to the classifier and the

N status of the C/T in the training data.

to improve cellular engineering. Given a query gene expression profile and a

ach transcriptional regulator based on its number of target genes, and extent of

he regulator in the C/T.
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We then assessed the accuracy of regulatory relationships

predicted by GRN reconstruction by comparison to three gold

standards. The first was based on ENCODE-generated tran-

scription factor binding data (Mouse ENCODE Consortium

et al., 2012), the second on gene expression profiling of mouse

embryonic stem cell lines modified for inducible expression of

one of 94 transcription factors (Correa-Cerro et al., 2011; Nishi-

kawa et al., 2007), and the third on ChIP-ChIP and ChIP-seq of

54 transcription factors in mESC (Xu et al., 2013; Zheng et al.,

2010). The ability of our GRNs to predict true regulatory relation-

ships, defined by ChIP-seq/ChIP-seq TF-binding sites, or by the

genes that change in expression upon transcription factor gain or

loss-of-expression, was as good or better than the state-of-the-

art reported in a recent meta-analysis of algorithms for GRN

reconstruction (Marbach et al., 2012) (Figure S1 available online).

This result demonstrates that merging gene expression profiles

from disparate experimental contexts yields high quality biolog-

ical models, likely due to the wide diversity of perturbations to

the underlying GRNs, regardless of the potential confounding

batch effects common to microarray experiments. Then, we

used the Gold Standards to select a threshold of strongly pre-

dicted regulatory relationships, resulting in 717,140 putative

regulatory relationships among 20,722 target genes and 1,268

transcriptional regulators in mouse GRNs, and 536,897 putative

regulatory relationships among 20,084 target genes and 1,566

transcriptional regulators in human GRNs. We have made the

complete set of regulatory relationships that define these

GRNs available for download at our companion website.

Next, we sought to define components of the GRN that are cell

and tissue specific. Complex networks are comprised of com-

munities or subnetworks in which some nodes (i.e., genes) are

more densely interconnected to each other than to nodes in

other subnetworks. Applying the InfoMap community-detection

algorithm (Rosvall and Bergstrom, 2007), we found 1,787 mouse

and 2,315 human subnetworks in our GRNs. By performing gene

set enrichment analysis (Efron and Tibshirani, 2007), we found

that 94 mouse and 76 human subnetworks were enriched in

genes more highly expressed in a C/T (Figure 1B) and as ex-

pected, these subnetworks were highly enriched in Gene

Ontology Biological Processes associated with specific cells or

tissues (Table S2). For simplicity, we combined the subnetworks

associated with each C/T into one general GRN per C/T and

used these general GRNs except when stated below (Table S3).

For each C/T, we trained a binary classifier by using all of the

genes in each C/T GRN in a randomly selected subset of the

overall training data. To assess the performance of the classi-

fiers, we applied the classifiers to an independent set of arrays

and calculated the sensitivity and false positive rate. The classi-

fiers performed well, reaching close to 100% sensitivity at false

positive rates %5% for all target C/Ts (Figure 1C and Figures

S1E–S1H). Clustering is the most commonly used approach to

determine relationships among samples based on expression

profiling. To determine whether CellNet was better at classifica-

tion than clustering, we also applied clustering to the validation

data sets. At sensitivities greater than 63%, CellNet had sub-

stantially superior precision, defined as the proportion of classi-

fications that are correct (Figure 1D). At sensitivities greater than

90%, CellNet achieved close to 100% precision. On the other
906 Cell 158, 903–915, August 14, 2014 ª2014 Elsevier Inc.
hand, at these same sensitivities, clustering classifications

were less than 25% precise, meaning that most of the calls

made at this threshold by clustering were false positives. Our

analysis implies that claims of cell engineering fidelity based on

clustering alone can convey false impressions of similarity

when indeed quite significant differences persist.

To help identify which subnetworks fail to be established or are

aberrantly established in engineered cells, we devised a metric

of GRN status given an expression profile (Figure 1E) that inte-

grates the closeness of the expression of each gene in a GRN

to its expected value, weighted by its importance to the network

and its importance in the associated C/T classifier. Finally, to

help prioritize transcriptional regulators for the improvement of

cellular engineering, we devised a network influence score that

integrates the expression level of the regulator in the target

C/T, the extent of dysregulation of the regulator and its predicted

targets in the query sample, and the number of predicted targets

(Figure 1F).

We have made CellNet available as a web application (http://

cellnet.hms.harvard.edu) where visitors can explore the GRNs,

download our software to run locally, or upload expression

data to be processed on our servers.

CellNet Limitations
We anticipated that the C/T type classifier might be limited in two

aspects. First, tissues represent heterogeneous populations,

whereas the goal of stem cell engineering is often the production

of a highly pure preparation of a specific cell type. Second, the

vast majority of our training data were derived from primary cells

and tissues, whereas most attempts at engineering cell popula-

tions are performed in vitro. To address how tissue heterogeneity

influences CellNet performance, we applied CellNet to primary

neonatal cardiomyocytes purified on the basis of a reporter

for alpha myosin heavy chain (aMHC) expression (Ieda et al.,

2010), to nociceptor neurons dissected and purified based on

Nav1.8 expression (Chiu et al., 2013), and to laser capturemicro-

dissected (LCM) human dopaminergic neurons (Zheng et al.,

2010). Purified mouse cardiomyocytes classified exclusively

as heart (Figure 2A) and reached greater than 90% heart GRN

status (Figure 2B). Heart tissue includes fibroblasts, endocar-

dium, neural, and vascular tissue in addition to cardiac muscle

cells, but despite the heterogeneous nature of the heart training

data, our classifier accurately determined the tissue of origin for

purified cardiomyocytes. This analysis also explains why tissues

like skeletal muscle, which shares functional features with heart

(e.g., myosin-based contraction), and lung, which shares cell

compositional features with the heart (e.g., substantial endothe-

lial cell contributions), show higher heart GRN establishment

levels than other cell types and tissues, because somemembers

of the heart GRN are shared by skeletal muscle and endothelial

cells (Figure 2B).Whenwe appliedCellNet to purified pain recep-

tor neurons, we found that they classified exclusively as generic

neurons (Figure 2C) (score = 0.792) and achieved a high neuron

GRN status (mean = 91.6%) (Figure 2D). Finally, whenwe applied

CellNet to LCM human dopaminergic neurons, we found that

they classified highly as neurons (mean score = 0.887) (Figure 2E)

and reached a high neuron GRN establishment (mean GRN sta-

tus = 98.5%) (Figure 2F). Taken together, these results

http://cellnet.hms.harvard.edu
http://cellnet.hms.harvard.edu
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Figure 2. CellNet Analysis of Purified

Primary and Cultured Cells

(A andB) Cell and tissue classification (A) and heart

C/T GRN status (B) of primary neonatal car-

diomyocytes in which RNA was harvested directly

after aMHC-GFP positive cells were purified by

FACS.

(C and D) Classification (C) and neuron GRN status

(D) of dissected dorsal root (DRG), trigeminal (Tri),

and nodose ganglia nociceptor neurons purified

on the basis of Nav1.8 expression.

(E and F) Classification (E) and neuron GRN status

(F) of laser capture micro-dissected human

dopaminergic (DA) neurons.

(G and H) Classification (G) and liver GRN status

(H) of primary hepatocytes cultured for 2-3 days.

(I) Cell and tissue characterization of cortical

neurons cultured for 7-8 days. Cultured neurons

are classified primarily as neurons and secondarily

as glia, similar to the the validation neuron data in

Figure 1B.

(J) Neuron C/T GRN establishment levels of

cultured primary neurons. In all figures, dark blue

bars represent the GRN status for the indicated C/

TGRN in the training data, light blue represents the

GRN status for the indicated C/T GRN in the query

samples, and bars are standard deviations.

See Figure S2.
demonstrate that despite cell composition heterogeneity in the

training data, CellNet is able to accurately classify specific cell

types according to the tissue from which they are derived.

To address how the effects of cell culture influence the perfor-

mance of CellNet, we analyzed the expression profiles of cortical

neurons (Peng et al., 2012) and hepatocytes (Mao et al., 2011)

that had been cultured in vitro prior to RNA extraction. We found

that primary hepatocytes cultured for 3 days classified exclu-

sively as liver (Figure 2G) and maintained a high liver GRN status

(Figure 2H). Predictably, however, as a consequence of the
Cell 158, 903–915
known dedifferentiation of hepatocytes

in culture (Strain, 1994), CellNet noted a

modest decrease in the classification be-

tween 48 and 72 hr, which is reflected in

decreased expression of mature hepato-

cyte markers (Figure S2). Similarly, neu-

rons cultured for 8 days retained high

neuron classification (mean = 0.870) and

a high neuron GRN status (Figures 2I

and 2J). The cultured neurons classified

secondarily as glial cells (mean score =

0.325), consistent with a minor glia

contamination in the cultured cells. The

classifications did not substantially

diminish for up to 8 days of culture,

demonstrating that despite the dediffer-

entiation effects of cell culture, CellNet is

sufficiently sensitive to detect the resi-

dent neural GRN. These results suggest

that gene expression changes induced

by cell culture, while modestly reducing
the classification score, are not sufficient to abolish the classifi-

cation of the primary cell type.

Engineered Neurons
To assess the relative fidelity of directed differentiation and

direct conversion to neural cells types, we applied CellNet to en-

gineered mouse neurons. To make the comparison between the

two engineering paradigms as fair as possible, we focused our

analysis on engineered cell populations that had the best target

C/T classification among published examples, as these
, August 14, 2014 ª2014 Elsevier Inc. 907
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Figure 3. CellNet Analysis of Engineered

Mouse Neurons

(A) C/T classification heatmap of the starting cell

population (esc), intermediate neural progenitors

(esc-np), and esc-derived neurons (esc-neuron).

(B) ESC (top) and neuron (bottom) GRN status in

ESC, esc-np, and esc-neurons compared to GRN

status of training ESC and neuron data. Error bars

in all GRN status plots represent one standard

deviation above and below the mean.

(C) Z scores of neural genes in esc-neurons.

‘‘Accessible’’ indicates genes with promoters that

are DNase hypersensitive, whereas ‘‘Inacces-

sible’’ indicates genes with promoters that are not

DNase hypersensitive.

(D) C/T classification heatmap of the starting cell

population (fibroblasts) and induced neurons (iN).

(E) Fibroblast (top) and neuron (bottom) GRN sta-

tus in fibroblasts and iNs compared to GRN status

of training fibroblast and neuron data.

(F) Z scores of neural genes in iNs.

See Figure S3.
represent what is optimally possible to date (see Table S4 for list

of all experiments analyzed and Table S5 for target C/T classifi-

cations). The ESC-derived cells (Arnold et al., 2013) achieved a

high neuron classification (score = 0.773; Figure 3A), with high fi-

delity for both the silencing of the ESC GRN and the establish-
908 Cell 158, 903–915, August 14, 2014 ª2014 Elsevier Inc.
ment of the neuron GRN (Figure 3B).

Indeed, neurons directly differentiated

from ESCs were nearly indistinguishable

from native neuronal populations, further

arguing that in vitro derived populations

can be effectively classified against

training data derived primarily from pri-

mary tissues.

The CellNet platform can be inter-

rogated to test specific mechanistic

hypotheses about what limits the ro-

bustness of cell fate conversions. For

instance, we hypothesized that chromatin

accessibility would dictate the fidelity of

establishment of lineage-specific gene

sets. We first mapped DNase hypersensi-

tivity data from the Mouse ENCODE proj-

ect to the promoters of genes that are

more highly expressed in neural cells

than in ESCs (i.e., ‘‘neural genes’’) (Mouse

ENCODE Consortium et al., 2012). Then

we asked whether the expression of

neural genes with accessible promoters

was more effectively established in

ESC-derived neurons than neural genes

with inaccessible promoters (Figure 3C).

As predicted, we found that expression

patterns for neural genes with accessible

promoters in the ESC state were more

readily established and closer to native

neural populations than were genes
lacking DNase hypersensitivity. This result indicates greater

dysregulation for occluded promoters and implies that additional

culture conditions that encourage the remodeling of chromatin

must be explored during directed differentiation to fully establish

the neural GRN.



We tested whether GRNs associated with lineages other than

ESCs and neurons were detected in ESC-derived neurons. As

expected, we detected modestly high glia classification scores

in populations of ESC-derived neurons, which typically include

glial contaminants, and consistent with the known glia constitu-

ents that contaminate the neuron training data (Figure 1C).

Next, we applied CellNet to the direct conversion of mouse

fibroblasts to dopaminergic neurons via the ectopic expression

of Ascl1, Nr4a2, and Lmx1a (Caiazzo et al., 2011). Induced neu-

rons (iN) were classified as generic neurons (mean score = 0.340;

Figure 3D), consistent with the functional characteristics of these

cells (e.g., spontaneous action potentials resembling in vivo neu-

rons and K+ induced monoamine release), but not as robustly as

did ESC-neurons (mean score = 0.773). Despite the fact that iN

were purified on the basis of TH-GFP positivity prior to RNA

collection, they exhibited high fibroblast GRN status (Figure 3E)

and a correspondingly high dysregulation of the fibroblast

GRN regulators (Figure S3A), suggesting that the converted

cells retain fibroblast identity. To explore possible mechanisms

whereby neural genes remained silenced, we asked whether

there was an association between promoter accessibility and

dysregulation of neural genes. In contrast to the case of ESC-

neurons, we found that neural genes with inaccessible pro-

moters in fibroblasts tended to be less dysregulated than

accessible genes, suggesting that nucleosome occlusion is not

a major factor limiting establishment of endogenous GRNs in

the directly converted population, consistent with Ascl1 acting

as a pioneer factor that opens occluded chromatin (Wapinski

et al., 2013). Taken together, this analysis suggests that directed

conversion establishes a neuron GRN but fails to silence the

fibroblast GRN, resulting in a hybrid cell type.

We tested whether GRNs and constituent subnetworks

associated with lineages other than fibroblasts and neurons

were established in iN (relative to fibroblasts or neurons). We

found that the heart subnetwork 1 and pancreas subnetwork 1

were partially established (Figures S3B and S3C), and specu-

lated that the aberrant GRNs arose because one or more of

the conversion factors specifically targeted the aberrant subnet-

works. To explore this possibility, we determined the enrichment

of CellNet predicted targets of each conversion factor in each

subnetwork, finding that indeed the pancreas subnetwork 1

was significantly enriched (p value = 8.56 3 10�6 by Chi-square

test). Heart subnetwork 1 genes were not enriched as targets of

any of the conversion factors, suggesting that they are indirect

targets or that their regulatory relationships were not detected

in the GRN reconstruction process.

Engineered Cardiomyocytes
Next, we applied CellNet to the best performing examples of

directed differentiation and direct conversion to murine cardio-

myocytes. First, we analyzed the directed differentiation of

mouse ESCs to cardiomyocytes (Christoforou et al., 2008). In

this experiment, ‘‘Cardiac progenitor cells’’ (ESC-CPC) carrying

a GFP reporter for the expression of the cardiac-specific gene

Nkx2.5 were FACS purified and analyzed after 5, 7, and 8 days

of directed differentiation, while ESC-derived cardiomyocytes

(ESC-CM) were isolated after 3 weeks by drug selection of

ESCs carrying a neomycin resistance cassette under the control
of an aMHC promoter. The ESC-CM classified as heart (mean

score = 0.568) (Figure 4A), and to a lesser extent as fibroblast

(mean score = 0.208). Furthermore, the ESC GRN was not

completely silenced, nor was the heart GRN entirely established

(Figure 4B); these cells scored lower than purified neonatal car-

diomyocytes (Figure 2A), again indicating that the incomplete

establishment of cardiomyocyte identity was not a consequence

of inadequacy of the training data.

The activation of GRNs for alternate cell fates can reflect

the infidelity of cell fate determination, population impurity,

or intrinsic transcriptional features reflecting a shared develop-

mental ontogeny. We found that the directed differentiation of

ESCs to cardiomyocytes partially established HSPC subnetwork

1 in the ESC-CPC (Figure S4A). Given that the ESC-CPC were

purified based on a Nkx2.5 reporter, and that a Nkx2.5+ popula-

tion in the developing embryo includes a CD41+ population with

definitive hemogenic potential (Nakano et al., 2013), the partial

establishment of the HSPC GRN is consistent with a model

where lateral plate mesoderm, the common developmental pre-

cursor to both the heart and definitive blood, emerges early in

directed differentiation in vitro. We also found that the fibroblast

GRN was well established in the ESC-CM (Figure S4B), consis-

tent with the partial fibroblast classification (Figure 5A). Notably,

the partial establishment of the fibroblast GRN was also de-

tected in twoother independent studies of ESC-CM (Figure S4C),

which may result from either a latent developmental plasticity of

in-vitro-derived ESC-CM or as an artifact of in vitro culture

conditions.

We hypothesized that nucleosome occlusion contributes to

the incomplete activation of heart-related genes during directed

differentiation and found that heart genes lacking DNase hyper-

sensitive sites in ESCs were more dysregulated in ESC-CMs

than heart genes with accessible promoters (Figure 4C). The ef-

fect is not as pronounced as we found in ESC-neurons, but

nonetheless supports the conclusion that the lack of accessi-

bility of cardiac promoters prevents the faithful establishment

of target GRNs in directly differentiated cells, and suggests

that strategies that lead tomore open, accessible chromatin dur-

ing directed differentiation would enhance cellular engineering.

Next, we applied CellNet to the direct conversion of mouse

cardiac fibroblasts to cardiomyocyte-like cells via the ectopic

expression of Gata4, Mef2c, and Tbx5 (Ieda et al., 2010). Consis-

tent with the demonstrated functional capacity of these samples

(e.g., Ca2+ oscillations, spontaneous contraction, and intracel-

lular action potential), the week 2 and week 4 cells were exclu-

sively classified as heart (Figure 4D), albeit at a much lower

overall classification score than ESC-derived CM (0.282 versus

0.568, respectively). The lower classification score for induced

cardiomyocytes (iCMs) was not due to the failure to silence the

residual fibroblast GRN (indeed, the fibroblast GRN was effec-

tively decommissioned), but rather to an incomplete establish-

ment of the heart GRN (Figure 4E). These data imply that the

remaining barrier to achieving amore bona fide heart GRN status

in iCM is the incomplete activation of heart related genes.

Indeed, several transcription regulators had low network influ-

ence scores in iCM, suggesting that manipulating these factors

might enhance direct conversion to cardiac fates (Figure S4D).

These factors include heart factors that have been shown to
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Figure 4. CellNet Analysis of Engineered Mouse Cardiomyocytes

(A) C/T classification heatmap of a time course of directed differentiation of ESC to cardiomyocytes. Cardiac progenitor cells (CPC), ESC-derived cardiomyocytes

at 3 weeks of differentiation (ESC-CM).

(B) ESC (top) and heart (bottom) GRN status in CPC and ESC-CMs compared to GRN status of training ESC and heart data. Error bars in all GRN status plots

represent one standard deviation above and below the mean.

(legend continued on next page)
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Figure 5. CellNet Analysis of 56 Distinct Cell Engineering Studies

CellNet classification score of target cell or tissue type in mouse (A) and

human (B) cell engineering experiments. Only the most terminal (i.e., fully re-

programmed, or last time points of differentiation or conversion) samples

profiled are included. See Figure S5.
enhance iCM induction (e.g., Myocd [Christoforou et al., 2013;

Ieda et al., 2010], Nkx2-5 [Ieda et al., 2010], and Hand2 [Song

et al., 2012]), and other heart-associated factors, which, to our

knowledge, have not been tested in direct conversions (e.g.,

Gata6 and Tbx20). CellNet also identified novel factors predicted

to enhance CM induction, including Phb, which is downregu-

lated as a consequence of cardiac hypertrophy (Chowdhury

et al., 2013), the sarcomere-associated transcription factor

Ankrd1, and Lrpprc. Analyzing promoter accessibility, we found

that heart genes (defined as genes expressed higher in heart

than in fibroblasts) with accessible promoters in fibroblasts

tended to be more dysregulated than genes with occluded pro-

moters (Figure 4F), implying that the pioneering function of Gata4

to specifically open inaccessible chromatin is sufficient to acti-

vate expression of heart genes in directly converted populations

(Ieda et al., 2010; Zaret and Carroll, 2011).

Next, we asked whether the inductive environment of the

mouse heart improved the CellNet classification and heart

GRN establishment of iCM that had been converted in situ

from resident cardiac fibroblasts, subsequently purified, and

profiled (iv-iCM) (Fu et al., 2013). Indeed, we found that the

iv-iCM had substantially increased heart classification scores

(mean = 0.498; Figure 4G) associated with a 90% heart GRN sta-

tus and complete silencing of the fibroblast GRN (Figure 4H),

consistent with the improved functionality of these cells (Qian
(C) Z scores of heart genes in ESC-CMs. ‘‘Accessible’’ indicates genes with prom

with promoters that are not DNase hypersensitive.

(D) Classification heatmap of the starting cell population (fibroblasts), and iCMs

(E) Fibroblast (top) and heart (bottom) GRN status in fibroblasts and iCMs comp

(F) Z scores of heart genes in iCMs.

(G) Classification heatmap of iCMs induced in vivo (iv-iCMs).

(H) Fibroblast (top) and heart (bottom) GRN status in fibroblasts and iv-iCMs com

(I) Z scores of heart genes in iv-iCMs.

See Figure S4.
et al., 2012). As in iCM converted in vitro, we found that heart

genes with accessible promoters in fibroblasts remained more

dysregulated than heart genes with inaccessible promoters,

suggesting that expression of the Gata4 pioneer factor is partic-

ularly adept at engaging and activating critical heart genes (Fig-

ure 4I). Most importantly, CellNet analysis demonstrates that

endogenous niches provide an enhanced milieu for direct con-

version of fibroblasts to the target cell type.

CellNet Analysis of Engineered Populations
Finally, we applied CellNet to all reprogramming, directed differ-

entiation, and direct conversion experiments published to date

that had been profiled on platforms compatible with the CellNet

training data (Table S4). This analysis included 22 studies of re-

programming to pluripotency, 15 of direct conversions (5 to neu-

ral lineages, 5 to cardiac lineages, 1 to endothelial cells, and 4 to

hematopoietic lineages), and 16 of directed differentiation (5 to

neural lineages, 4 to cardiac lineages, 2 to endothelial cells, 1

to fibroblasts, 2 to hepatocytes, and 2 to hematopoietic line-

ages). Relative to reprogramming, differentiation and conversion

protocols show far less fidelity in generating populations that

approach their target C/T, with a few exceptions (Figure 5, Table

S5, and Figure S5). Notably, some ‘‘primed conversions,’’ so-

called because they entail a transient ectopic expression of

Pou5f1, achieved very high target C/T classifications (e.g., hu-

man induced endothelial cells and hepatocytes). Moreover, di-

rection conversions between developmentally related cell types

achieve higher target C/T classifications (e.g., pre-B cell to

macrophage) than conversions among more distinct lineages

(e.g., fibroblasts to hematopoietic progenitors).

DISCUSSION

A major goal of stem cell biology is the engineering of cells and

tissues in vitro for applications in biomedical research, drug

discovery, and therapeutic transplantation. However, metrics

are lacking to define how closely engineered cell populations

approach molecular and functional identity to target cell types

and to identify and repair the critical gene expression differences

between engineered cell types and their ideal target cell or tissue

types. Here, we describe CellNet, a computational platform that

determines the extent to which engineered cell populations have

established GRNs that govern C/T identity. We have applied the

platform to assess how well current cellular engineering tech-

niques generate target cell populations. In a companion paper,

we use CellNet to improve the conversion of B cells to macro-

phages and to reveal the unanticipated intestinal potential of

induced hepatocyte-like cells (Morris et al., 2014). Several
oters that are DNase hypersensitive, whereas ‘‘inaccessible’’ indicates genes

2 and 4 weeks after ectopic expression of transgenes.

ared to GRN status of training fibroblast and heart data.

pared to GRN status of training fibroblast and heart data.
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insights from our analytical studies have implications for stem

cell biology and cellular engineering.

First, CellNet indicates that reprogramming of somatic cells

to pluripotency is the most faithful and complete cell-fate con-

version among the many reported studies, providing a distinct

and independent corroboration of other meta-analyses that con-

firms that iPSC and ESC are indistinguishable at the transcrip-

tome level (Cahan and Daley, 2013; Newman and Cooper,

2010). Second, we found that neurons and cardiomyocytes

derived by directed differentiation of pluripotent stem cells

more completely establish the target tissue- and cell-type

GRNs than do neurons and cardiomyocytes directly converted

from fibroblasts. While ESC-derived cells appear superior to

directly converted cells, even these cell populations lack full

establishment of target C/T GRNs. The target C/T GRNs appear

to be incompletely established because of promoter inaccessi-

bility, as indicated by a lack of DNase hypersensitive sites, sug-

gesting that developmental programs of in vitro differentiation

fail to properly induce critical pioneer factors that activate essen-

tial gene expression programs. Surprisingly, according to Cell-

Net analysis, the major barrier to direct conversion does not

appear to be restricted access to the promoters or enhancers

of target C/T genes, as these seem to be effectively activated

by virtue of the powerful action of pioneer transcription factors

included in the reprogramming cocktails. Instead, it appears

that a failure to adequately silence donor cell GRNs and the

expression of aberrant GRNs resulting in hybrid cell types repre-

sent the main molecular deficiencies of directly converted cell

populations. These observations suggest that conversions be-

tween closely related cell types, which consequently minimize

the ‘‘epigenetic distance’’ between donor and target cell, allows

the most high fidelity fate conversions, as observed for lineage

and stage conversions within the hematopoietic system (Di Tullio

et al., 2011; Doulatov et al., 2013; Riddell et al., 2014).

Third, analysis of cardiomyocyte populations induced in situ

from resident cardiac fibroblasts demonstrates that the native

tissue environment provides additional selective and/or induc-

tive signals to more completely establish the heart GRN. We

anticipate that this finding is likely to hold for most engineered

cell types.

Fourth, we have found that GRNs of the starting cell type are

detectable in purified populations of both directed differentiation

and in direct conversion experiments. In ESC-CM, the residually

expressed members of the ESC-GRN are associated with ESC

cell-cycle regulation and their impact on the tumor forming

potential and developmentally immature phenotype of ESC-

derived cells may be considerable. Directly induced neurons

retain fibroblast GRNs, which may impede the normal range of

neuron behavior. Our work has identified specific regulators of

these residual GRNs that are candidates to be targeted in future

studies in an attempt to extinguish features of the ESC cell cycle

that persist in ESC-CMs, or to silence the residual fibroblast GRN

in induced neurons.

Finally, we have discovered that the establishment of unin-

tended GRNs is common to virtually every cellular engineering

paradigm, either during the conversion or in the final products.

For example, an unexpected GRN establishment occurs during

the directed differentiation of ESC to cardiomyocytes, during
912 Cell 158, 903–915, August 14, 2014 ª2014 Elsevier Inc.
which the HSPC GRN is partially established. This may reflect

in vitro development of an aberrant cell population or may

reflect development of a common mesodermal intermediate,

which may in fact represent a signature of shared develop-

mental ontogeny that is reflected in transient GRN expression

detected in time-course experiments by CellNet. An example

of unintended GRN establishment in the final cell product is

the partial establishment of pancreas and heart subnetworks

in induced neurons. It is possible that the iN transgenes target

sufficient numbers of pancreas genes to modestly increase

the expression of their cognate targets, and we speculate that

these transcriptional regulators may prove useful in engineering

pancreas cell types. By suppressing the transcriptional regula-

tors of the pancreas GRNs, it may be possible to prevent their

establishment and thereby improve the efficiency and fidelity

of the iN conversions. Taken together, these results confirm

that off-target transcriptional events of cellular engineering are

frequent. More investigations are needed to determine how un-

intended targeting can either facilitate the conversion, lead to

less efficient protocols or result in populations with hybrid

GRNs.

We acknowledge that our current CellNet platform is limited in

several ways, which suggest important avenues for future im-

provements. First, whereas mice and humans consist of hun-

dreds of individual cell types, the limitations of the data available

for training CellNet, which requires at least 60 gene arrays per

cell or tissue type to achieve optimal performance of the GRN

reconstruction, provides adequate resolution for only 20 target

cell and tissue types in mouse and 16 in human. Moreover, the

GRNs were reconstructed based largely on tissues rather than

purified cell types. For example, the training data for the

‘‘neuron’’ C/T encompasses dissected brain and multiple types

of neurons. Consequently, CellNet compares engineered popu-

lations to a generic ‘‘neuron,’’ and at present cannot distinguish

between distinct neuronal subtypes. These limitations notwith-

standing, CellNet performs admirably as a metric for assessing

engineered cell similarities to a wide number of experimentally

and medically important target cell and tissue types, and as

demonstrated in the accompanying paper (Morris et al., 2014),

can effectively suggest hypotheses for dysregulated transcrip-

tion factors that can be further manipulated to enhance the iden-

tity and function of engineered populations. Our long-term goal is

to employ single-cell RNA sequencing data to resolve the issue

of tissue heterogeneity and to expand the platform to train on

numerous distinct cell types.

Second, the training data are largely comprised of in vivo pro-

files, whereas most cellular engineering samples to date are

derived in vitro. This limitation appears to be of minimal conse-

quence because of the strong predictive power of C/T GRNs,

which are not so confounded by signatures of cell culture as to

compromise their utility. When we compared primary cultured

cells and lines for which expression profiles were available (car-

diomyocytes, neurons, and hepatocytes), we found that CellNet

matched the cultured cells with their in vivo counterparts with

high fidelity. Ideally, however, we will need to profile cultured pri-

mary cells for many more medically relevant cell types to be able

to formally distinguish generic cell culture artifacts from defects

of cellular engineering.



Finally, as sequencing costs fall, the increased use of RNA-seq

is likely to soon replace microarrays as the transcriptomic plat-

form of choice. To that end, we are working to extend CellNet

so that it can be applied directly to RNA-seq data. CellNet is

also amenable to incorporation of additional types of global epi-

genomic data, such as analysis of DNA methylation and histone

marks, and accumulating experience with whole-genome loca-

tion analysis of transcription factor binding, such that future ver-

sions of CellNet will have improved resolution and predictive

value.

EXPERIMENTAL PROCEDURES

Training CellNet

To generate the complete training data sets, GEO was queried for expression

profiles on the Affymetrix Mouse 430.2, Illumina8v2, HG133 plus 2, MoGene

1.0, and HuGene 1.0 platforms. Affymetrix microarrays not passing the GNUse

quality control metric were not used to train CellNet. Probe intensities from raw

.CEL files were background corrected and summarized into probeset values.

Then, values of probesets mapping to the same gene were averaged. Each

array was normalized by dividing each gene expression value by the total

gene expression per array. To reconstruct cell type and tissue-specific

GRNs, gene expression profiles from GEO representing 16–20 cell and tissue

types with at least 10 perturbations per C/T were used as input to CLR (Faith

et al., 2007). The resulting expression matrix was quantile normalized to create

a data set for input to the CLR GRN reconstruction algorithm. Samples were

then limited to those as defined in Extended Experimental Procedures, prior

to re-executing CLR. An optimal regulatory relationship score was selected

based on the Gold Standard assessment and used to remove lower perform-

ing edges from the GRN. C/T-specific GRNs were identified by first splitting up

the large single GRN into subnetworks using InfoMap (Rosvall and Bergstrom,

2007). Subnetworks were attributed to specific C/Ts by determining which

subnetworks were more highly represented in gene set enrichment analysis

of each C/T versus all other C/Ts. Gene set enrichment analysis was

performed on each subnetwork to identify C/T-enriched subnetworks, and

subnetworks enriched in the same C/Ts were merged into single C/T GRNs.

For each platform, a single Random Forest classifier was trained for each C/

T (Breiman, 2001). Initially, approximately 50% of arrays were randomly

selected and used to train each Random Forest classifier. The performance

of these classifiers was evaluated by classifying the remaining, independent

arrays, which were not used to train the classifier and were from different

studies. The performance of these classifiers is presented in Figure 1B and Fig-

ures S1E–S1H. To improve the overall power of the classifiers, we then used all

arrays to train the classifiers used in the final version of CellNet.

GRN Status

We reasoned that the extent to which a GRN is established in a sample is

reflected in the expression of the genes in the GRN such that the GRN genes

should fall within a range of expression observed in the corresponding C/T in

the training data. We formalized this notion as a GRN status metric, defined in

comparison to the complete training data set. The status of C/T GRN in a query

sample is defined as the weighted mean of the Z scores of the genes in the

GRN, where the Z score is defined in reference to the expression distribution

of each gene in a C/T. The GRN status score can be weighted by the absolute

expression level of each gene in a C/T so that genes more highly expressed

have more influence on the GRN status (default) and/or by the importance to

the Random Forest classifier (default):

RGSðxÞ=
Xn

i = 1

�
ZscoreðgeneÞC=T � gene weightGRN

�

where n = number of genes in the GRN and gene weight is proportional to the

expression of the gene in C/T and, optionally, derived from the importance of

the gene to the Random Forest classifier. Zscore(gene) is determined in refer-

ence to the expression distribution of the gene in C/T samples in the complete
training data set.We transform and normalize the rawGRN status score so that

higher GRN status indicates a GRN status more similar to the endogenous C/T

as:

GSðxÞ= 1; 000� RGSðxÞ�Pk
j RGSðyÞ

�.
k

where ðPk
j RGSðyÞÞ=k is the average RGS of C/T samples in the complete

training data.

Network Influence Score

To estimate the importance of transcriptional regulators to dysregulated

GRNs, we devised the following network influence score (NIS):

NISðTRÞ=
Xn

i = 1

�
ZscoreðtargetÞC=T �weighttarget

�

+ n � ZscoreðTRÞC=T �weightTR

where TR = transcriptional regulator and n = number of genes in the GRN. By

default, CellNet weights the target and TR by their mean expression in the C/T

samples of the complete training data set when searching for inappropriately

silenced factors.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, five

figures, and five tables and can be found with this article online at http://dx.

doi.org/10.1016/j.cell.2014.07.020.

AUTHOR CONTRIBUTIONS

P.C., S.A.M., and H.L. designed, performed, and interpreted analyses and

wrote the paper. E.L.d.R. performed analysis and helped to write the paper.

J.J.C. and G.Q.D. oversaw the project and helped to design the study and

write the paper.

ACKNOWLEDGMENTS

J.J.C. is supported by NIH grant R24DK092760 and the HHMI. G.Q.D. is

supported by grants from the NIH (Progenitor Cell Biology Consortium UO1-

HL100001, R24DK092760, and P50HG005550), the Ellison Medical Founda-

tion, Doris Duke Medical Foundation, and Boston Children’s Hospital Stem

Cell Program, and is an affiliate member of the Broad Institute. P.C. is sup-

ported by NIDDK (K01DK096013) and received support from NHLBI

(T32HL066987 and T32HL007623). S.A.M. is supported by a Young Investi-

gator Award from Alex’s Lemonade Stand Foundation. H.L. is supported by

Mayo Clinic Center for Individualized Medicine and Mayo Clinic Center for

RegenerativeMedicine. E.L.d.R. is supported by National Council for Scientific

and Technological Development and the program Science Without Borders

(CNPq, Brazil).

Received: January 14, 2014

Revised: May 28, 2014

Accepted: July 17, 2014

Published: August 14, 2014

REFERENCES

Aasen, T., Raya, A., Barrero, M.J., Garreta, E., Consiglio, A., Gonzalez, F., Vas-

sena, R., Bili�c, J., Pekarik, V., Tiscornia, G., et al. (2008). Efficient and rapid

generation of induced pluripotent stem cells from human keratinocytes. Nat.

Biotechnol. 26, 1276–1284.
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