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And the Noise Played On:
Stochastic Gene Expression
and HIV-1 Infection

Stochastic gene expression has been implicated in a
variety of cellular processes, including cell differen-
tiation and disease. In this issue of Cell, Weinberger
et al. (2005) take an integrated computational-experi-
mental approach to study the Tat transactivation feed-
back loop of HIV-1. They show that fluctuations in a
key regulator, Tat, in an isogenic population of in-
fected cells result in two distinct expression states
corresponding to latent and productive HIV-1 infec-
tion. These findings demonstrate the importance of
stochastic gene expression in molecular “decision-
making.”

The traditional view of cellular processes as being
largely deterministic is changing in the wake of an
increasing number of studies demonstrating that
stochastic gene expression influences the phenotype
of cells. Phenotypic heterogeneity has long been ob-
served in populations of genetically identical cells ex-
posed to the same environmental conditions. Recent
studies of gene expression in prokaryotes (Ozbudak et
al., 2002; Elowitz et al., 2002) and in single-celled eu-
karyotes (Blake et al., 2003; Raser and O’Shea, 2004)
are beginning to detail the physical mechanisms that
lead to such variability. In general, stochastic gene ex-
pression can be attributed to the random, or “noisy,”
nature of the biochemical processes involved in tran-
scription and translation (Kaern et al., 2005).

Seminal theoretical work by Harley McAdams and
Adam Arkin (McAdams and Arkin, 1997) explored the
mechanistic basis for stochastic gene expression and
showed that the bifurcation of clonal cells into distinct
phenotypic states can result solely from such molecular
“noise.” Subsequently, Arkin et al. (1998) applied these
ideas to a specific biological system—the bacteriophage
lambda lysis/lysogeny decision circuit. They demon-
strated, through an insightful mathematical model, that
fluctuations in the rate of production of key regulators
of this switch can be amplified by positive feedback
resulting in either a lytic or lysogenic state. Importantly,
stochastic gene expression, combined with positive
feedback in the lambda circuit, was found to be critical
for the behavior of the switch. Further experimental
work in Escherichia coli (Isaacs et al., 2003), in the bud-
ding yeast Saccharomyces cerevisiae (Becskei et al.,
2001), and in mammalian cells (Kramer and Fusseneg-
ger, 2005) confirmed that positive feedback coupled to
molecular noise was sufficient to generate distinct phe-
notypic states in a population of clonal cells.

In this issue of Cell, Arkin, together with Leor Wein-
berger and colleagues, extends these ideas from bac-
teriophage to retroviruses with an exploration of the
role of stochasticity within the Tat transactivation loop
of HIV-1. Their aim was to determine whether HIV-1 lat-
ency can be explained by stochasticity in the expres-
sion of a key regulator, the Tat transactivator. After in-
fection of host cells (usually T lymphocytes) by HIV-1,
basal expression of proviral genes, including Tat, en-
ables the formation of a protein complex containing Tat
that enters the host cell nucleus and facilitates proviral
gene expression. This initiates a positive feedback
loop, resulting in productive infection, retroviral amplifi-
cation, and death of the host cell. Alternatively, the HIV-1
provirus can lie dormant in a latent state. The authors
hypothesized that the cellular decision to follow one
of these two mutually exclusive expression modes is a
stochastic one, mediated by random fluctuations in the
production of the Tat transactivator. Cells that, by
chance, exhibit greater initial bursts of Tat protein pro-
duction trigger the positive feedback loop resulting in
productive infection, whereas cells with lower levels of
Tat production enter a latent infection state.

To test this hypothesis, Weinberger et al. (2005) con-
structed a lentiviral vector system composed only of
the Tat transactivation feedback loop. The vector con-
tained the HIV-1 long terminal repeat (LTR) promoter
driving the expression of a green fluorescent protein
(GFP) and the Tat transactivator separated by an in-
ternal ribosome entry sequence (IRES). This LTR-GFP-
IRES-Tat (LGIT) vector represents the minimum circuitry
involved in the Tat transactivation loop. A control vector
was also constructed in which the Tat transactivator
was omitted (LTR-GFP, or LG), thus disrupting the feed-
back mechanism. The authors also developed a com-
putational model of Tat transactivation to determine
critical features that would guide their experimental im-
plementation. Key among these was the need to mimic
the physiologically low levels of Tat expression upon
initial entry of HIV-1 into the host cell. In the model, low
levels of Tat protein represent an unstable state that
results in transition to either high Tat expression,
through activation of the Tat transactivation loop, or to
attenuated Tat expression and latency (see Figure 1).
This led the researchers to design their model lentiviral
vector with the Tat protein expressed as the second
cistron in the LGIT vector (leading to reduced Tat ex-
pression).

The investigators infected Jurkat T lymphocytes at a
low multiplicity of infection with the LGIT or LG lentiviral
vectors and used flow cytometric measurements of
GFP levels to monitor viral gene expression. LGIT-
infected cells exhibited distinct degrees of GFP fluores-
cence described as Bright, Dim, Mid, and Off; control
LG-infected cells exhibited low GFP fluorescence (clas-
sified as either Dim or Mid). Cells were sorted from
each of the LGIT fluorescence regions to determine
whether each of these states of Tat activity was stable.
At the two extremes, sorted Off cells remained Off,
whereas sorted Bright cells slowly relaxed to the Off
region. Cells sorted from the Mid region transitioned to
the Bright region, and, most interestingly, cells from the
Dim region transitioned into the Bright or Off regions.
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Figure 1. The Tat Transactivation-Positive
Feedback Loop

Stochastic fluctuations in the production of
the HIV-1 Tat protein within a model positive
feedback loop (LTR-GFP-IRES-Tat) result in
two distinct phenotypes. Cells that, by chance,
exhibit a large burst of Tat protein produc-
tion initiate the Tat transactivation loop lead-
ing to the production of high levels of Tat
protein, corresponding to productive HIV-1
infection. Alternatively, in other cells, basal
levels of Tat protein production may not be
sufficient to initiate the positive feedback
loop, corresponding to latent HIV-1 infection.
Because the Dim region corresponds to low levels of s
aTat production, complete loss of Dim region cells sup-

ports the initial model predictions that low Tat levels l
vare unstable, leading to either high production of viral

genes (Bright) or latent infection (Off). Notably, none of t
(the control LG-infected cells transitioned from a Dim

or Mid fluorescent state into a Bright fluorescent state, T
Tconsistent with the notion that positive feedback is the

critical factor mediating the response of LGIT-infected c
cells.

Clones were subsequently isolated from the Dim re- t
tgion of the LGIT-infected cell population to observe the

stability of the Dim region in a population of cells with i
dsimilar basal Tat expression rates. Consistent with ob-

servations in polyclonal populations, some clones iso- t
ilated from the Dim region transitioned into Bright or

Off fluorescent states, and, strikingly, a large number p
sexhibited two subpopulations representing distinct

Bright and Off phenotypes. The authors termed this k
nphenomenon—that is, the emergence of distinct phe-

notypes from a single genotype— phenotypic bifurca- d
ation or PheB. In contrast to clones isolated from LGIT

Dim regions, those isolated from LGIT Bright regions or f
tLG Dim regions did not exhibit PheB. It is important to

note that Off cells within the clonal PheB population
mcould be induced to the Bright state by various means,

such as artificially increasing the level of Tat protein, M
edemonstrating that Off cells were capable of initiating

the positive feedback loop. t
mThe authors performed an extensive list of controls

to rule out other possible sources of PheB, including m
Aextrinsic noise factors (for example, cell size and cell

division) and potential position effects resulting from m
sthe chromosomal location of viral integration. Interest-

ingly, there seemed to be preferential integration near i
ahuman endogenous retroviral long-term repeats, a phe-

nomenon that, as the authors state, warrants further t
exploration. After analysis of various control data, the
authors conclude that the most likely explanation for i

tPheB is the stochastic expression of the Tat protein
within the Tat transactivation loop. t

nThese experiments, motivated by the initial in silico
model of the Tat transactivation loop, led to further P

wmodel refinement, with a focus on elucidating molecu-
lar properties of the system that directly account for a

aPheB. The authors used stochastic simulations of the
biochemical reactions involved in the Tat transactiva- p

1tion loop. A simple representation of the feedback
ystem resulted in a series of models that were then
nalyzed and compared to experimental findings. Fol-

owing these model-experiment comparisons, the in-
estigators converged on a single in silico representa-
ion with key features including transactivation delays
mediated by cyclical acetylation and deacetylation of
at) and, as previously mentioned, low basal levels of
at expression, with the establishment of an initial Tat
oncentration prior to proviral integration.
The refined model was then used to make a predic-

ion about PheB cell behavior under conditions of a mu-
ant Tat circuit. Specifically, the model predicted that,
f the rate of Tat acetylation was decreased (thereby
ecreasing transactivation strength), the rate at which

he Bright PheB cells relaxed to the Off state would
ncrease. This relaxation is not necessarily relevant
hysiologically, as Bright cells would normally repre-
ent productively infected cells that are effectively
illed. Nevertheless, it offered the authors the opportu-
ity to test an insightful model prediction. The authors
id so by using a mutated version of Tat with attenu-
ted acetylation, and they observed faster relaxation
rom the Bright state to the Off state, consistent with
heir model prediction.

There is growing interest in integrating computational
odels with experimental data in molecular biology.
uch of the prior work in this area has focused on gen-

rating a model and showing that it can capture fea-
ures of existing experimental data. Rarely have the
odels been used to make a series of predictions that
otivate new experiments and provide new insights.
n attractive feature of the present study is that in silico
odeling was the starting point, motivating the initial

et of experiments. Moreover, the authors used model-
ng throughout the study to interpret the collected data
nd to generate testable predictions, while also using
he experimental data to validate and refine the models.

The work of Weinberger et al. (2005) represents an
mportant step in moving from studies that elucidate
he origins of stochasticity in gene expression to those
hat investigate the consequences of such molecular
oise on cellular function. The authors describe their
heB observations in terms of a possible scenario in
hich HIV-1 can “hedge its bets” by having an inherent
bility to proceed to either latency or viral production—
nalogous to similar arguments made for bacterio-
hage lambda’s lysis/lysogeny decision (Arkin et al.,
998). This intriguing notion still needs to be tested ex-
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perimentally, and, more broadly, much work remains to
be done to understand the functional role that gene
expression noise potentially plays in the progression
of disease.
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