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Cellular decision making is the process whereby cells assume different, functionally important and
heritable fates without an associated genetic or environmental difference. Such stochastic cell fate
decisions generate nongenetic cellular diversity, which may be critical for metazoan development
as well as optimized microbial resource utilization and survival in a fluctuating, frequently stressful
environment. Here, we review several examples of cellular decision making from viruses, bacteria,
yeast, lower metazoans, and mammals, highlighting the role of regulatory network structure and
molecular noise. We propose that cellular decision making is one of at least three key processes
underlying development at various scales of biological organization.
Introduction
If we, humans, want to control living cells, two strategies are typi-

cally available: modifying their genome or changing the environ-

ment in which they reside. Does this mean that cells with

identical genomes exposed to the same (possibly time-depen-

dent) environment will necessarily have identical phenotypes?

Not at all, for reasons that are still not entirely clear. When cells

assume different, functionally important and heritable fates

without an associated genetic or environmental difference,

cellular decision making occurs. This includes asymmetric cell

divisions as well as spontaneous differentiation of isogenic cells

exposed to the same environment. Specific environmental or

genetic cues may bias the process, causing certain cellular fates

to bemore frequently chosen (as when tossing identically biased

coins). Still, the outcome of cellular decision making for indi-

vidual cells is a priori unknown.

A growing number of cell types are being described as

capable of decision making under various circumstances, sug-

gesting that such cellular choices are widespread in all organ-

isms. What are the molecular mechanisms underlying the

decisions of various cell types, and why are such decisions so

common? We hope to suggest answers to these questions

here by considering examples at increasing levels of biological

complexity, from viruses to mammals. Such a comparative over-

viewmay reveal common themes across different domains of life

and may offer clues about the significance of cellular decision

making at increasing levels of biological complexity (Maynard

Smith and Szathmáry, 1995).

Balls rolling down a slanted landscape with bifurcating

valleys (Waddington and Kacser, 1957) have been widely and
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repeatedly used for several decades as a pictorial illustration of

differentiation in multicellular development. Despite its sugges-

tive qualities and repeated use, it has been largely unclear

what the valleys and peaks represent in the illustration called

‘‘Waddington’s epigenetic landscape.’’ The increasingly quanti-

tative characterization of gene regulation at the single-cell level

is now enabling the computation of Waddington’s landscape

(Figure 1), which can serve as a general illustration of an emerging

theoretical framework for cellular decision making. Assuming

for a moment that cellular states can be represented by the

concentration of a singlemolecule, the horizontal axes in Figure 1

will correspond to the concentration of this molecule and a time-

dependent environmental factor, respectively, whereas the

vertical dimension corresponds to a potential that governs

cellular dynamics. Cells illustrated as spheres will tend to slide

down along the concentration axis (pointing from left to right)

toward local minima (stable cell states) on this landscape while

they also progress toward the observer in time, as a time-depen-

dent environmental factor continuously reshapes the geography

of the landscape. Based solely on these considerations, identical

cells released from the same point on Waddington’s landscape

will follow indistinguishable trajectories, precluding cellular deci-

sionmaking and differentiation. On the other hand, cells released

from distinct but nearby points can move to different minima as

the bifurcating valleys amplify pre-existing positional differences.

According to this deterministic interpretation, cellular decision

making anddifferentiation are completely explainedbypre-exist-

ing phenotypic differences within isogenic cell populations.

Extensive theoretical and experimental work has started

to seriously challenge this simplistic deterministic view, as it is
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Figure 1. Illustration of Cellular Decision

Making on aMolecular Potential Landscape
The landscape (projected onto the concentration
of a specific molecule) is reshaped as the envi-
ronment changes in time. The blue ball represents
a cell that, under the influence of a changing
environment, can assume three different fates at
the proximal edge of the landscape (white balls at
the end of the time course). Even in a constant
environment, cells can transition between local
minima due to random perturbations to the land-
scape (intrinsic molecular noise).
becoming clear that at least four critical revisions to Wadding-

ton’s picture are needed to properly describe cellular dynamics.

First, in reality, the landscape is high-dimensional, defined by all

intracellular molecular concentrations and multiple relevant

environmental factors, and is not a potential in the usual sense.

For this reason, cyclic flows (eddies) may exist that move cells

around on closed trajectories in concentration space, even if

the local geography is completely even (Wang et al., 2008).

Second, the landscape is under the constant influence of omni-

present molecular noise (Kaern et al., 2005; Maheshri and

O’Shea, 2007; Rao et al., 2002)—stochastic ‘‘seismic vibrations’’

of varying amplitudes and spectra, specific to each location on

the landscape (Figure 1). Third, the landscape is not rigid: cells

themselves may reshape the geography due to cell-cell interac-

tions (Waters and Bassler, 2005) and the growth rate depen-

dence of protein concentrations (Klumpp et al., 2009; Tan

et al., 2009). Last, but not least, growth rate differences between

various cellular states reshape the landscape, lowering locations

of high fitness and elevating points with reduced fitness as fast

growth ‘‘overpopulates’’ certain locations and thereby deepens

the landscape. Therefore, Waddington’s landscape must be

integrated with a nongenetic version of Sewall Wright’s fitness

landscape for genetically identical individuals (Pál and Miklós,

1999).

For the purposes of this review, intrinsic gene expression

noise (Blake et al., 2003; Elowitz et al., 2002; Ozbudak et al.,

2002) is the most critical component missing fromWaddington’s

picture. The reason is that even identical cells released from the

same location in Figure 1 will feel the perturbing effects of

omnipresent random fluctuations at every point on their way.

Random noise will shake them apart, modifying their trajectories

and forcing them to cross barriers, diffuse along plateaus, and

find new local minima. Thus, intrinsic noise enables the pheno-

typic diversification of completely identical cells exposed to

the same environment and further facilitates cellular decision

making for cells already slightly different when released onto

Waddington’s landscape. Moreover, according to the concepts
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of escape rate theory (Hänggi et al., 1984;

Mehta et al., 2008; Walczak et al., 2005),

even cells maintained in a constant

environment will have limited residence

time around each local minimum (valley)

on the landscape, as noise can induce

repeated transitions between various

cellular states.
Why is cellular decision making so widespread, and when

could it confer advantages compared to more deterministic

cell fate scenarios? Considering that noise is unavoidable when-

ever a few copies of a certain molecule react with others inside

small volumes (as is the case of DNA inside cells), nongenetic

diversity should be very common in the cellular world. Because

noise reduction requires high intracellular concentrations or

costly negative feedback loops, it should be more surprising if

a cellular process is not noisy than if it is. However, not all pheno-

typic diversity is functionally important and heritable across cell

divisions and may therefore not classify as cellular decision

making. Still, some cellular processes are noisier than expected

based on Poissonian protein synthesis and degradation (New-

man et al., 2006), or the resulting cellular states are heritable

across several cell cycles (see below), arguing for functionality

as the reason for their existence.

The need for stochastic differentiation appears when indi-

vidual cells are unable to fully adapt to their environment. For

example, photosynthesis and nitrogen fixation are essential but

mutually exclusive functions in many cell types. To resolve this

dilemma, many cyanobacteria dedicate a subpopulation of cells

entirely to nitrogen fixation while the rest of the cells remain

photosynthetic (Wolk, 1996), thereby ensuring that the cell pop-

ulation can simultaneously fix carbon and nitrogen. The segrega-

tion of somatic cells from germ cells is another classic example in

which the tasks of locomotion and replication are allocated to

different subpopulations (Kirk, 2005). Stochastic differentiation

into a growth-arrested but stress-resistant state (such as a spore)

may optimize survival in an uncertain, frequently stressful envi-

ronment by segregating two essential tasks: growth in the

absence of stress and survival in the presence of stress. Theoret-

ical work has demonstrated the advantage of phenotypic

specialization in a cell population when the added benefits

from two vital tasks are smaller than the cost for one cell to

perform both tasks (Wahl, 2002). Theory has also shown that

a population of cells capable of random phenotypic switching

can have an advantage in a fluctuating environment (Kussell
4, March 18, 2011 ª2011 Elsevier Inc. 911



and Leibler, 2005; Thattai and van Oudenaarden, 2004; Wolf

et al., 2005). Recent experiments confirmed these predictions,

showing that noise can aid survival in severe stress (Blake

et al., 2006), can optimize the efficiency of resource uptake

during starvation (Ça�gatay et al., 2009), and can optimize survival

in specific fluctuating environments (Acar et al., 2008).

Still, the optimality of stochastic cellular decision making in a

well-defined environment does not guarantee that this behavior

can evolve. This is because, usually, one of the stochastically

chosen cellular states has lower direct fitness (West et al.,

2007), rendering the switching strategy vulnerable to invasion

by mutants that never switch into the less fit state but neverthe-

less reap the benefits of cohabitation with faithful switchers. This

can be prevented by cheater control (West et al., 2006) or by the

regular recurrence of detrimental environmental conditions that

suppress or eliminate such mutants. Once stochastic switching

became an evolutionarily stable strategy, such task-sharing

decisions in clonal microbial populations (Bonner, 2003; Veening

et al., 2008a) may have formed the bases of multicellular devel-

opment. Therefore, the need for optimal resource utilization and

survival in a changing environment may have been important

driving forces behind the evolution and maintenance of cellular

decision making across various domains of life, as suggested

by the recent laboratory evolution of bet hedging (Beaumont

et al., 2009).

In the following, we will describe how approaches frommolec-

ular biology, nonlinear dynamics, and synthetic biology have

been used to gain insight into the role of biological noise in

cellular decision making, effectuated by a variety of molecular

network structures in organisms of increasing biological

complexity, including viruses, bacteria, yeast, lower metazoans,

and mammals.

Viruses
One of the earliest molecular choices made during the evolution

of life on Earth may have been the environment-dependent deci-

sion to arrest replication. As the first replicators appeared in the

primordial soup (Dawkins, 2006), it may have been advanta-

geous to copy themselves rapidly only in favorable conditions,

including an appropriate level of basic building blocks, tempera-

ture, acidity, radiation, and preferably no fellow competitors.

Moreover, alliances between replicators and sensor mole-

cules may have formed to ensure that replication occurred effi-

ciently and accurately under the appropriate circumstances.

Though we may never be certain about the specific events that

took place as life began on our planet, viral infections probably

offer some clues (Koonin et al., 2006). Viruses are among the

simplest nucleic acid-based replicating entities, which presently

can only multiply inside of the cells they parasitize. Nevertheless,

viral decisions taking place in host cells are in every aspect

similar to the bacterial, fungal, and metazoan cellular fate

choices described in the subsequent sections, indicating that

cellular decision making is a misnomer. In fact, ‘‘cellular’’ deci-

sions are taken by more or less autonomous replicating systems

that reside inside and manipulate the behavior of carrier cells to

maximize the chance of their own propagation (Dawkins, 2006).

A particularly well-studied virus is bacteriophage lambda

(Ptashne, 2004), which preys on the bacterium Escherichia coli
912 Cell 144, March 18, 2011 ª2011 Elsevier Inc.
and has served as a model for virology for more than half of

a century. The infection cycle of this ‘‘coliphage’’ virus begins

with attachment to the bacterial cell wall, followed by the injec-

tion of viral DNA into the host and the initiation of transcript

synthesis. From this moment, two outcomes are possible. The

infection either culminates with replication and virus assembly

that causes host lysis, or it concludes with the integration of viral

DNA into the bacterial chromosome followed by a prolonged

period of lysogeny. This is a typical example of decision making

at the subcellular level, as viruses with identical genomes infect-

ing isogenic cells can either become lytic or lysogenic. Despite

the apparent simplicity of the viral genome, the story of lambda

phage decision making is still not completely written and may

hold many surprises.

In a series of papers starting in the 1960s (Ptashne, 1967),

Mark Ptashne described two repressors (CI and Cro) that proved

to be essential for the lysis-lysogeny decision of phage lambda

(Figure 2A). CI and Cro are encoded from two divergent

promoters (PRM and PR, respectively) and are controlled by three

shared operator sites (OR1, OR2, and OR3) to which either CI or

Cro dimers can bind but with different affinities (OR1 > OR2 >

OR3 for CI and OR3 > OR2 > OR1 for Cro). CI repressor binding

to OR1 has negligible effect on cI transcription, whereas CI

binding toOR2 activates and CI binding toOR3 represses cI tran-

scription. CI binding to any operator site represses cro transcrip-

tion (Figure 2A). Cro represses both its own and cI expression but

has a stronger effect on cI. Consequently, CI and Cro mutually

repress each other, operating as a natural toggle switch (Gardner

et al., 2000) with bistable dynamics (Figures 2B and 2C),

augmented with autoregulatory loops. This regulatory structure

inspired the first mathematical models of the lambda switch

(Shea and Ackers, 1985).

Though the CI-Cro module is most commonly known as the

core of the ‘‘lambda switch,’’ it is only the tip of the iceberg of

regulatory interactions involved in the lysis/lysogeny decision

(Oppenheim et al., 2005; Ptashne, 2004). Additional mechanisms

include DNA loop formation that reinforces cro repression, regu-

lation of cI expression by CII and CIII, and antitermination of

cro transcript synthesis (Figure 2A). These components were

included into a comprehensive stochastic model of the lambda

switch (Arkin et al., 1998), which was also the first study to apply

the Gillespie algorithm (Gillespie, 1977) for modeling a natural

gene network. This seminal work pointed out how stochastic

molecular events, originating from the random movement of

cellular contents, can trigger decisions on a much larger scale,

leading to divergent cellular fates.

Stochastic decision making starts as soon as the first viral

gene products appear in the cytoplasm. Cro gets a head start,

but CI catches up soon, and both fluctuate due to random tran-

scription-regulatory events. The race continues until the abun-

dance of one of these molecules overwhelms the other,

terminally flipping the lambda switch into one of two possible

stable states (cro-on/cI-off or cI-on/cro-off). In addition to

early stochastic events, many environmental factors can bias

stochastic decision making and influence the outcome of infec-

tion, including the nutritional state and DNA damage response of

the host cell, as well as the number of phages coinfecting the

host cell (multiplicity of infection). Therefore, the lambda phage



Figure 2. Viral Decision Making
(A) Gene regulatory network controlling the lambda phage lysis/lysogeny decision consists of the core repressor pair CI and Cro and a number of additional
regulators, such as N and CII. Cro and CI mutually repress each other, and CI also activates itself from theOR2 operator site, which results in a structure of nested
positive and negative feedback loops. The mutual regulatory effects of CI and Cro are annotated with the number of theOR site corresponding to each particular
interaction.
(B) Nullclines for CI and Cro, based on themodel fromWeitz and colleagues (Weitz et al., 2008), at a multiplicity of infectionMOI = 2. Along the CI nullcline, there is
no change in CI, and along the Cro nullcline, there is no change in Cro. Neither CI nor Cro changes in the points where the nullclines intersect, which represent
steady states. The nullclines intersect in three distinct points, indicating that there are three steady states.
(C) Potential calculated along the Cro nullcline, based on the Fokker-Planck approximation, 4= 2

R ½ðf � gÞ=ðf +gÞ� d½CI�, wherein f and g represent CI synthesis
and degradation along the Cro nullcline, respectively. Filled circles indicate stable nodes. The gray circle indicates that themiddle state is a saddle (unstable along
the Cro nullcline but stable along the CI nullcline). Molecular noise will force the system to transition between the two valleys, especially in the beginning of
infection when transcripts and proteins are rare and noise is high.
(D) The autoregulation of the Tat transcription factor from HIV was reconstituted by expressing both GFP and Tat from the LTR promoter, which is naturally
activated by Tat. The internal ribosomal entry site (IRES) (Pelletier and Sonenberg, 1988) between the two coding regions ensures that GFP and Tat are co-
translated from the same mRNA template.
(E) After being sorted based on their expression level as Off, Dim, Mid, and Bright, the cells followed different relaxation patterns: Off remained Off; Dim first
trifurcated into Off, Dim, and Bright, and then the Dim peak gradually disappeared; Mid relaxed to Bright; and most of Bright remained Bright, with a small
subpopulation relaxing to Low.
(F) Control synthetic gene circuit without feedback.
(G) After sorting, the control gene circuit had amuch simpler relaxation pattern. Most cells were Low, which remained Low after sorting, whereas Dim cells mostly
remained Dim, with a few of them relaxing to Off. These patterns were interpreted as the hallmarks of excitable dynamics.
has a stochastic switch that is capable of hedging bets in

a ‘‘smart,’’ environment-dependent manner, investing in both

immediate and future expansions.

The importance of intrinsic noise in the lambda switch was

recently questioned by a number of research groups. First, it

was shown that the host cell volume plays an important role in

the decision, with larger cells being more likely to lyse (St-Pierre

and Endy, 2008). This pointed to the concentration of infecting

phages (rather than their absolute number) as the critical factor

in the outcome of infection. Following theoretical predictions by
Weitz et al. (Weitz et al., 2008), Zeng and colleagues explained

away even more stochasticity (Zeng et al., 2010), showing that

the predictability of infection outcome improves if each phage

is assumed to cast its own lysis/lysogeny vote, a unanimous

vote being necessary for lysogeny. Importantly, stochasticity

was reduced, but not eliminated, in this study, suggesting that,

although further details of the phage-host systemmaybe discov-

ered that make the outcome of infection more predictable,

intrinsic stochasticity stemming from the random nature of

gene expression will remain an important factor to consider.
Cell 144, March 18, 2011 ª2011 Elsevier Inc. 913



So, is noise a general factor in viral choices between lysis and

dormancy? This seems to be the case, as suggested by recent

work on the latency of human immunodeficiency virus (HIV) in

CD4+ T cells (Weinberger et al., 2005). After HIV integrates into

the host genome, active HIV infections almost always culminate

in lysis. However, the site of HIV integration is highly variable and

has a strong effect on the resulting expression dynamics. In rare

occasions, the integrated virus becomes latent, creating an

incurable reservoir that is the main obstacle preventing the elim-

ination of the disease (Han et al., 2007). To determine the mech-

anism of HIV latency, Weinberger and colleagues focused on the

positive autoregulatory loop of the Tat transcription factor as the

key component in HIV decision making (Weinberger et al., 2005).

The authors built two synthetic gene constructs, the first of which

coexpressed the green fluorescent protein (GFP) with Tat from

the long terminal repeat (LTR) promoter (positive feedback,

Figure 2D), whereas the second consisted of GFP alone tran-

scribed from the same promoter (no feedback, Figure 2F). After

integrating these constructs into the genome, the authors moni-

tored the dynamics of GFP expression over several weeks after

sorting CD4+ T cells by their fluorescence as either Off, Dim,Mid,

or Bright. The relaxation of these sorted cell populations over

time (Figures 2E and 2G) was interpreted as a signature of excit-

able dynamics, when cells perturbed from the stable Off state

undergo transient excursions into the Bright regime, from which

they return to the Off state. Remarkably, this behavior depended

on the site of HIV integration (because most clonal populations

initiated from a Bright cell remained Bright, and all Off clones re-

mained Off). Only a small subset of clones exhibited excitable

dynamics, suggesting that excitability requires weak basal LTR

promoter activity. These findings were in agreement with

a simple mathematical model that captured the experimentally

observed behavior of these constructs and identified preintegra-

tion transcription as the stochastic perturbation that causes the

spikes in Tat expression. Further work showed a lack of cooper-

ativity in the response of the LTR promoter to Tat and a rightward

shift in the autocorrelation function of GFP expression due to

positive feedback (Weinberger et al., 2008), confirming the

earlier conclusions that Tat autoregulation does not induce bist-

ability (Weinberger et al., 2005). Instead, futile cycles of acetyla-

tion/deacetylation of Tat en route to the LTR promoter act as

a dissipative ‘‘resistor,’’ weakening autoregulation and reducing

Tat expression to basal levels. The fact that excitable HIV inte-

gration clones readily respond to a number of immune

response-related external factors suggests that these excep-

tional integrants may provide the pool of latent HIV infection in

resting memory T cells. When highly active antiretroviral therapy

eliminates the productive HIV pool, these latent but excitable

viruses wait for their chance to reappear as a new infection.

In conclusion, these studies on lambda phage and HIV

suggest that viral choices between replication and latency

may, in general, be stochastic, driven by randommolecular noise

within networks characterized by bistable or excitable dynamics.

This hints at the possibility that some of the most studied cellular

processes such as DNA replication may be based on stochastic

decision making inherited from ancient biomolecular circuits,

e.g., that autonomously dictate the length of theG1 phase before

cell cycle Start (Di Talia et al., 2007). Moreover, these studies on
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viruses support the idea that ‘‘cellular’’ decisions actually occur

at the level of intracellular molecular networks. The outcome of

these stochastic decisions is an environment-dependent

balance between lysis and lysogeny within viral populations,

faithfully encoded by the viral genome and the host environment.

Therefore, cellular decision making constitutes a very simple

mechanism for pattern formation that does not require cell-cell

interactions or intercell communication and can therefore oper-

ate from the lowest to the highest levels of biological complexity

(from viruses to multicellular eukaryotes), as discussed below.

Bacteria
Among microbes used in the study of unicellular development,

Bacillus subtilis leads the pack. Besides its easy genetic manip-

ulation, the main reason for the popularity of this soil bacterium

is the variety of developmental choices that it assumes during

starvation (Lopez et al., 2009). As nutrients become limiting,

B. subtilis gears up to differentiate into spores—nongrowing

capsules that are highly resistant to a variety of stresses and

starvation—but without a rush. In fact, these bacteria take every

possible opportunity to delay sporulation of the entire clonal cell

population by exploring a number of alternative options,

including extracellular matrix production, motility, cannibalism,

nutrient release through cell lysis, cell growth arrest, and DNA

uptake (competence). Cells uncommitted to sporulation start

growing as soon as one of these alternative strategies enables

them to do so or as soon as nutrients become available.

One particular B. subtilis cell fate decision that has attracted

much attention recently is the transition to competence, when

cells take up extracellular DNA and use it as food or perhaps

to integrate it into the genome as a mechanism of increased

evolvability under stress (Galhardo et al., 2007). During starva-

tion, only a limited percent of the clonal bacterial population

becomes competent, a decision dictated by themaster regulator

ComK that activates the genes involved in this developmental

program, including itself (Figure 3A). ComK levels are controlled

by the protease complex MecA/ClpC/ClpP, which also binds

ComS, a factor that is capable of preventing ComK degradation

through competitive binding to the protease. Because comS is

repressed during competence, these interactions form a nega-

tive feedback loop around comK.

Süel and colleagues developed a mathematical model,

showing that the nested positive and negative feedback loops

enable excitable dynamics (Figures 3B and 3C), generating

pulses of ComKprotein expression and episodes of competence

(Süel et al., 2006). Each of these episodes starts with a transient

increase in ComK levels that is amplified through autoregulation,

leading to a quick rise to maximal ComK protein expression and

transition to competence. This, in turn, leads to comS repression,

enabling the protease complex to degrade ComK, terminating

the ComK pulse and the episode of competence.

If ComK controls entry into and ComS controls exit from

competence, then they should affect different aspects of these

transient differentiation events. This was indeed the case, as

found by controlled ComK and ComS protein overexpression

(Süel et al., 2007). High basal comK expression increased the

frequency of competence epochs until the point in which the

cells remained permanently competent. On the other hand,



Figure 3. Competence Initiation in B. subtilis
(A) The gene regulatory network controlling entry into competence consists of
the master regulator ComK and its indirect activator, ComS. ComK activates
its own expression, and ComS is downregulated during competence, which
results in a structure of nested positive and negative feedback loops. Regu-
latory interactions mediating positive and negative feedback are shown in red
and blue, respectively. Arrowheads indicate activation; blunt arrows indicate
repression.
(B) Nullclines for ComK and ComS, based on the model from Süel et al. (2006).
The nullclines intersect in three distinct points, indicating that there are three
steady states.
(C) Potential calculated along the nullcline d[ComS]/dt = 0, based on the
Fokker-Planck approximation, f= 2

R ½ðf � gÞ=ðf +gÞ� d½ComK�, wherein f and
g represent comK synthesis and degradation, respectively, along the ComS
nullcline. The filled circle on the left indicates a stable steady state. The gray
circles in the middle and on the right indicate saddle points: the middle one is
unstable along the ComS nullcline (it is sitting on a ‘‘crest‘‘ in the potential),
whereas the one on the right is unstable along the ComK nullcline. A small
perturbation (due to molecular noise) will drive ComK expression from the
stable steady state near the other two steady states, initiating transient
differentiation into competence, after which the system returns to the steady
state on the left.
high comS basal expression prolonged the time spent in compe-

tence. To further establish the mechanism of competence initia-

tion, the authors ingeniously inhibited cell division while DNA

replication continued unaltered. This caused the cell volume to

increase, leaving the average ComK concentrations unaffected
while lowering the noise in ComK protein expression. Examining

the rate of competence initiation in cells of increasing length (and

consequently, decreasing ComK noise), the rate of competence

initiation dropped substantially. Consequently, ComK noise

plays a crucial role in competence initiation by elevating

subthreshold levels of ComK toward a critical point at which

positive feedback takes effect to initiate periods of competence,

in a manner similar to stochastic resonance (Wiesenfeld and

Moss, 1995). Likewise, ComS protein expression noise was

found crucial for controlling not just the length, but also the vari-

ability of competence episodes. A synthetic gene circuit with

equivalent average dynamics to the natural one had much lower

variability of competence episodes, which severely compro-

mised the DNA uptake capacity of the cell population (Ça�gatay

et al., 2009). The crucial role of noise in competence initiation

was independently confirmed by another group (Maamar et al.,

2007) after successfully decoupling ComK protein expression

noise and mean. Although they studied ComK dynamics over

a shorter time, Maamar et al. found that entry into competence

occurred predominantly during a transient rise in ComK expres-

sion around the time of entry into stationary phase.

Competence is a bacterial attempt to delay complete sporula-

tion of the entire clonal cell population. However, if no cells

decide to sporulate while the environment continues to worsen,

the population will have a decreased chance of survival. There-

fore, all bacteria must eventually sporulate, which they do, but

only gradually over several days. A recent account of cell fate

decision in sporulation conditions reported on cell population

size and individual cell length in growingB. subtilismicrocolonies

(Veening et al., 2008b). After the initial exponential phase, the

authors observed a period of slow bacterial growth (diauxic

shift), later followed by complete growth arrest for approximately

half of a day. By measuring the growth rate and morphology of

individual cells, three distinct cell fates were identified: spores,

vegetative cells, and lysing cells. Interestingly, only the vegeta-

tive cells grew during the diauxic phase, accounting alone for

all of the growth observed during this period. Cells that later

formed spores or lysed did not grow, indicating that their cellular

fates bifurcated much before their terminal phenotypes could be

determined. This phenotypic bifurcation was independent of cell

age but was consistent within ‘‘cell families’’ defined as a cell and

all its descendants, implying ‘‘transgenerational epigenetic

inheritance’’ (Jablonka and Raz, 2009) of this decision. These

heritable cell fate decisions correlated with transcription from

a sporulation promoter and were eliminated when the phosphor-

elay feedback through the master sensor kinase for sporulation

was disrupted, demonstrating the importance of posttransla-

tional (rather than transcriptional) positive feedback in the inher-

itance of cellular fate.

Observing the frequency of stochastic cellular decisions in

clonal bacterial populations brings up the interesting question:

is there a role for cellular decision making as bacteria join forces

in a population-level effort such as in quorum sensing, the ability

of bacteria to detect their density and thereby orchestrate pop-

ulation-level behaviors such as luminescence or virulence?

This question is currently being addressed using Vibrio harveyi

as a model organism. As V. harveyi cells divide and their density

exceeds a threshold, they undergo a remarkable transition and
Cell 144, March 18, 2011 ª2011 Elsevier Inc. 915



become bioluminescent, which is made possible by their ability

to synthesize and detect specific small signaling molecules

(autoinducers) through quorum sensing (Waters and Bassler,

2005). Growing cell populations produce more and more autoin-

ducer, which becomes concentrated and turns on biolumines-

cence, in addition to a number of other functions related tomulti-

cellular behavior. Whether all or only some individual cells

undergo the decision triggered by quorum sensing remains an

important open question that will soon be answered thanks to

recent efforts to measure quorum sensing-related gene expres-

sion at the single-cell level in newly engineered V. harveyi strains.

So far, gene expression measurements for the master quorum-

sensing regulator LuxR (Teng et al., 2010) and a small RNA

controlling LuxR expression revealed relatively low but autoin-

ducer-dependent noise (Long et al., 2009), which may imply

that the V. harveyi quorum-sensing circuit has evolved to reduce

noise and bacterial individuality while transitioning to population-

level behavior. Indeed, multiple nested negative feedback loops

have been identified along the signaling cascade connecting

autoinducer receptors to LuxR (Tu et al., 2010), which are

network structures capable of noise reduction (Becskei and

Serrano, 2000; Nevozhay et al., 2009).

Other examples of cellular decision making in bacteria are the

activation of the lactose operon in E. coli and bacterial persis-

tence (phenotypic switching of bacteria to an antibiotic-tolerant

state). The first of these has a history of more than five decades

(Novick and Weiner, 1957) and will not be discussed here.

Regarding bacterial persistence, some critical information is still

missing. Persistence of E. coli cells has been observed at the

single-cell level (Balaban et al., 2004), but the underlying network

and molecular mechanisms may be highly complex and are

currently unknown. Conversely, a bistable stress response net-

work has been proposed to underlie persistence inMycobacteria

(Sureka et al., 2008; Tiwari et al., 2010), but the measurements

to observe persistent cells and link them to this network have

yet to be performed.

In summary, bacteria are masters of cellular decision making,

which enables them to hedge bets in a fluctuating, often stressful

environment. This may explain their presence in the most

extreme and unpredictable environments. Unlike viruses, which

typically decide between lysis and lysogeny, genetically identical

bacteria can select their fates randomly from a spectrum of

multiple options. Fates with lowest direct fitness (such as the

spore state) are entered gradually, with a delay, while a variety

of alternative options are explored. Bacterial cell decisions

involve noisy networks with feedback loops that are capable

of bistable or excitable dynamics. Unlike viruses, bacteria

can combine cellular decision making with other mechanisms

(such as cell-cell communication) to achieve more complex

population-level behaviors. Cellular decision making appears

suppressed when cell-cell communication becomes prominent

(as in quorum sensing), suggesting that microbial individuality is

undesired when genetically identical bacteria assume multicel-

lular behaviors. The above examples indicate that many bacterial

species are capable of population-level behaviors. Moreover,

these examples suggest that the simplest forms of multicellular

behavior do not require physical contact or communication

between cells.
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Yeast
The budding yeast Saccharomyces cerevisiae was the first

organism for which the noise of thousands of fluorescently

tagged proteins expressed from their native promoters was

measured (Bar-Even et al., 2006; Newman et al., 2006). Many

yeast genes were found to be significantly noisier than expected

based on Poissonian protein synthesis and degradation, sug-

gesting that gene expression bursts may cause the elevated

noise of certain genes, whichmay be beneficial and under selec-

tion. These noisy genes had a tendency to be associated with

stress responses (Gasch et al., 2000) and often contained

a TATA box in their core promoter. Accordingly, TATA box

mutations were found to diminish gene expression noise, which

lowered the chance of survival in severe stress from which the

gene’s protein product offered protection (Blake et al., 2006).

Taken together, these results suggested that yeast cells carry

an arsenal of genes with unexpectedly noisy expression,

supplying the noise needed for phenotypic diversification,

which can benefit the population in a fluctuating, often stressful

environment.

The galactose uptake system is a relatively well-studied

example of a noisy environmental response network. Yeast cells

show bimodal expression of galactose uptake (GAL) genes when

exposed to a mixture of low glucose and high galactose, indi-

cating that cells decide stochastically between utilizing either

the limited amount of glucose or growing on galactose (Biggar

and Crabtree, 2001). On the other hand, the expression of GAL

genes is, in general, more uniform in the absence of glucose

when grown on galactose alone or on galactose mixed with raffi-

nose and glycerol. How is it possible for a gene network to

generate uniform or bimodal (noisy) expression across the cell

population, depending on the stimulus? Essentially, the GAL

molecular circuitry consists of three feedback loops. Two of

these feedback loops are positive and involve the galactose

permease Gal2p and the signaling protein Gal3p. The third feed-

back loop is negative and involves the inhibitor Gal80p. All three

molecules (Gal2p, Gal3p, and Gal80p) are under the control of

the activator Gal4p, and they also regulate Gal4p activity and

galactose uptake (Figure 4). To understand how this network

structure affects cellular decision making, each of these feed-

back loops was individually disrupted (Acar et al., 2005), and

the pattern of GAL gene expression across the cell population

was examined after transferring the cells from no galactose- or

high galactose-containing medium to various intermediate

galactose concentrations.

The wild-type strain, with all three feedback loops intact,

had history-dependent gene expression a day after transfer,

depending on the original growth condition. Specifically, wild-

type cells transferred from high galactose had unimodal GAL

expression tracking the galactose concentration, whereas those

transferred from low galactose had bimodal expression, indi-

cating that only a subpopulation of cells made the choice to

take up galactose. GAL2 deletion had a minimal effect on the

GAL expression pattern compared to wild-type cells. On the

other hand, disruption of the Gal3p-based positive feedback

loop resulted in unimodal GAL gene expression regardless

of the conditions prior to transfer, indicating that the cells lost

their capacity of decision making. Finally, disruption of the



Figure 4. The Galactose Uptake Network in S. cerevisiae
(A) Regulatory network controlling galactose uptake. Regulatory interactions
mediating positive and negative feedback are shown in red and blue,
respectively, and the regulatory interaction that participates in both positive
and negative feedback loops is shown in light blue. Solid lines indicate tran-
scriptional regulation; dashed lines indicate nontranscriptional regulation
(for example, Gal80p binds to Gal4p and represses Gal4p activator function on
GAL promoters). Arrowheads indicate activation; blunt arrows indicate
repression.
(B) Gal3p synthesis (blue lines) and degradation (red line) rates as functions of
Gal3p concentration, for three different galactose concentrations.
(C) Potential based on the Fokker-Planck approximation, f= 2

R ½ðf � gÞ=
ðf +gÞ�d½Gal3p�, wherein f and g represent Gal3p synthesis and degradation,
respectively. There is a stable steady state on the left side of the surface at all
galactose concentrations. At sufficiently high galactose concentrations, an
Gal80p-based negative feedback loop resulted in unimodal, low

GAL expression for cells transferred from no galactose, whereas

cells transferred from high galactose had a bimodal distribution.

Overall, these results indicate that the Gal3p- and Gal80p-based

feedback loops play critical roles in cellular decision making and

history dependence of GAL expression.

The gene expression patterns observed by Acar and

colleagues (Acar et al., 2005) bring up an important concept:

cellular memory. Considering that cells make stochastic deci-

sions, how long do they stick to their choices? This question

can be reformulated in terms of escape rates and addressed

theoretically, as follows: given that a cell resides in a potential

well on Waddington’s landscape (Figure 1), how long does it

take for it to escape under the influence of noise to a nearby

well? Theory predicts that the chance of escape depends on

two factors: noise strength and the height of the barrier that

needs to be surpassed in order to escape (Hänggi et al., 1984)

(noise facilitates, whereas a tall barrier hinders escape). Based

on the noise strength and the ‘‘geography’’ of the potential

shown in Figure 4, the authors predicted that, by controlling

GAL80 expression, they could prolong or shorten the mainte-

nance of high and lowGAL expression states in cells with disrup-

ted negative feedback. This was then confirmed experimentally

(Acar et al., 2005).

Another remarkable case of yeast cell decision making was

described by Paliwal and colleagues, who used clever microflui-

dic chip design to study the response of individual amating-type

yeast cells to the a pheromone (Paliwal et al., 2007). Pheromone

was supplied artificially so as to establish a spatial gradient in

which a high number of cells exposed to various pheromone

concentrations could be observed. Normally, the pheromone

serves as a cue to direct a cell elongation (shmooing) toward

a mating partner of opposite type (a). Cells exposed to no pher-

omone or high pheromone behaved in a uniform fashion (all cells

budding and shmooing, respectively). However, a very different

scenario emerged for cells that were exposed to identical inter-

mediate pheromone concentrations: a mixture of budding, cell

cycle arrested, and shmooing phenotypes were observed,

demonstrating cellular decision making. Shmooing cells had

significantly higher expression of the transcription factor

Fus1p, indicating that at least one observed phenotype was

attributable to bimodal gene expression. The network that is

responsible for Fus1p activation consists of a mitogen-activated

protein kinase (MAPK) pathway that encompassesmultiple posi-

tive feedback loops, prime candidates for inducing bimodal

FUS1 expression. Indeed, disruption of these feedback loops

made FUS1 expression and the response to pheromone more

uniform across yeast cell colonies, supporting the idea that posi-

tive autoregulation can induce cellular decision making.

These examples indicate that cellular decision making is

widely utilized by yeast cells to maximize the propagation of their

genome in a changing environment. A prominent role of feed-

back regulation in cellular decision making is emerging from
additional steady state appears (deep well on the right). As galactose
concentration is slowly increased, cells can end up in either potential well
(cellular decision making). Moreover, molecular noise can move cells from one
potential well to the other, even in constant galactose concentration.

Cell 144, March 18, 2011 ª2011 Elsevier Inc. 917



Figure 5. Cell Fate Specification during Lower Metazoan

Development
(A) The morphogen Bicoid regulates hunchback expression during fruit fly
development, setting up the scene for subsequent patterning of the embryo.
(B) Bicoid and Hunchback concentrations along the anterior-posterior axis of
the fruit fly embryo (length: �500 mm), according to the measurements by
Gregor and colleagues (Gregor et al., 2007). The Bicoid concentration (red) is
exponentially decreasing toward the posterior end, with a length constant
of 500 mm, and is ‘‘read out’’ by Hunchback (blue) with a 10% relative error
rate according to the average dose-response relationship Hb/Hbmax =
(Bcd/Bcd1/2)

5/[1+(Bcd/Bcd1/2)
5].

(C) Gene regulatory network controlling intestinal cell fate specification during
Caenorhabditis elegans development.
these examples, although other regulatory mechanisms (such as

epigenetic regulation) can also play a role (Octavio et al., 2009).

As many genes are noisy when yeast cells grow in suspension,

it is interesting to ask how noise and cellular decision making

are regulated and exploited during the transition to population-

level behaviors such as flocculation due to quorum sensing

in yeast cell populations (Smukalla et al., 2008). Yeast cells

carry a primitive version of the molecular arsenal utilized

during metazoan development, such as homeodomain proteins,

morphogens, and the apoptosis pathway. Is noise in these path-

ways suppressed or elevated in yeast compared to higher

eukaryotes? Answering these questions may yield important

insights into the regulation of cellular decision making in meta-

zoan development.

Lower Metazoans
Animals are compact multicellular organisms that grow out from

a single zygote cell following a complex embryonic develop-

mental program. During development, increasingly differentiated

cell types emerge through sequential rounds of cell division,

giving rise from about one thousand (Caenorhabditis elegans)

to millions (Drosophila melanogaster) or tens of trillions (humans)

of isogenic cells in a fully developed animal. Moreover, these

expanding and diversifying cell subpopulations perform remark-

ably well-defined movements in space and time, such that they

arrive to appropriate locations relative to each other, ready to

perform their function in the adult animal (Goldstein and Nagy,

2008). Importantly, a few cells embed themselves into specific

niches and remain partially undifferentiated, thereby becoming

adult stem cells that are capable of replacing differentiated cells

that are lost during adult life.

The tremendous population expansion that cells undergo

during embryonic development poses a serious danger of error

amplification, implying that stochastic cellular decision making

should be less common than in unicellular organisms, and

control mechanisms should exist to suppress it during develop-

ment (Arias and Hayward, 2006). Without proper control, a

random switch to an incorrect cell fate in the wrong place or at

the wrong time could have detrimental consequences for the

developing embryo. For this reason, highly stochastic cell fate

choices may be restricted to specific cell types and develop-

mental stages, such as the differentiation of adult and embryonic

stem cells or the differentiation of cells whose precise location is

unimportant (such as retinal patterning and hematopoiesis).

Given the omnipresence of noise, how precise can animal

development be, and what noise control mechanisms are

utilized? These questions were addressed recently by moni-

toring the spatial expression pattern of the gap gene hunchback

in single D. melanogaster nuclei in response to the morphogen

Bicoid (Figures 5A and 5B), which is asymmetrically deposited

by the mother to the anterior pole of the egg (Gregor et al.,

2007). The fertilized fruit fly zygote initially does not separate

into individual cells, allowing Bicoid to freely diffuse away from

this pole and create an exponential anterior-posterior gradient

along the dividing nuclei. Consequently, single nucleus-wide

sections perpendicular to the anterior-posterior axis in the devel-

oping embryo will have practically identical, exponentially

decreasing morphogen concentrations (Figure 5B), with a 10%
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drop between neighboring sections, regardless of their location

in the embryo (Gregor et al., 2007). This concentration change

is successfully and reliably detected by neighboring nuclei, as

indicated by their gene expression pattern (Holloway et al.,

2006). How is it possible to achieve this precision?

Among other genes, hunchback expression represents a crit-

ical readout of Bicoid concentration (Figure 5A), restricting future

segments in the larva, and later the adult fly, to their appropriate

locations. Hunchback expression levels showed sigmoidal

morphogen dependence, indicating highly cooperative activa-

tion by Bicoid (Figure 5B). More importantly, Hunchback had

remarkably low noise levels in sets of nuclei exposed to identical

morphogen concentrations, with a noise peak corresponding to

the steepest region of the Hunchback dose response, in which

the coefficient of variation was about 20%. Assuming that

hunchback expression noise was originating from Bicoid fluctu-

ations, the authors used the Bicoid-Hunchback dose-response

data to infer the noise in Bicoid concentration, as perceived by

individual nuclei, and found a U-shaped error profile along the

anterior-posterior axis, with a minimum coefficient of variation

of 10%, consistent with earlier work (Holloway et al., 2006).

This indicates that cellular decision making is strongly sup-

pressed while setting up hunchback expression along the

embryo in response to Bicoid. Individual nuclei have merely



10% autonomy in deciding what Bicoid concentration is in their

surroundings and setting up the appropriate response.

Seeking to understand how neighboring nuclei could reliably

detect a 10% drop in Bicoid concentration, Gregor and

coworkers estimated the averaging time necessary to reduce

the error that individual nuclei make in estimating Bicoid concen-

trations, relying solely on stochastic Bicoid binding/dissociation

events to/from its DNA-binding sites. The results were strikingly

inconsistent with the temporal averaging hypothesis, requiring

nearly 2 hr of averaging to reach 10% relative error. Looking

for alternatives, the authors asked whether spatial averaging

could also contribute to noise reduction. Measuring the spatial

autocorrelation of Hunchback concentration fluctuations around

the mean revealed that nuclear communication indeed occurs

over approximately five nuclear distances, reducing the aver-

aging time to a single nuclear cycle (�3 min). In summary, sets

of neighboring nuclei talk to each other and jointly accomplish

quick and accurate estimates of the local Bicoid gradient. The

identity of the mediator for this nuclear communication remains

elusive.

To study spatiotemporal patterns of expression for several

genes during a later developmental stage (mesodermal pattern-

ing), another group applied quantitative in situ hybridization

followed by automated image processing in hundreds of fruit

fly embryos (Boettiger and Levine, 2009). Contrary to the high

precision of Hunchback response to Bicoid (Gregor et al.,

2007), several genes had variable, ‘‘dotted’’ expression across

the developing premesodermal surface, indicating that gene

expression can be noisy even during multicellular development.

This noise was, however, transient, as by the end of the meso-

dermal patterning phase, all cells expressed these genes at

maximal level, indicating that cells can choose autonomously

the time of their activation during mesodermal patterning but

have no freedom to choose their final expression level at the

end of this period. Importantly, another subset of genes behaved

differently from their noisy peers and reached their full expres-

sion in concert, over a relatively short timescale. Seeking to

identify mechanisms underlying this type of ‘‘synchrony’’ for

this second subclass of genes, the authors found that their

expression was typically regulated through a stalled polymerase.

Moreover, one of the low-noise genes, dorsal, had to be present

in two copies for maintaining the synchrony and low noise of

other genes from the second subclass. The few genes that

still maintained low noise after deleting one dorsal copy were

found to have shadow enhancers—distal sequences involved

in gene activation, which apparently ensure the robustness

and reliability of expression for a few highly critical develop-

mental genes. These findings indicate that noisy gene expres-

sion and stochastic cell fate decisions would be the default

even during metazoan development if intricate regulatory mech-

anisms did not exist to suppress these variations, ensuring reli-

able patterning.

One developmental process that fully exploits cellular decision

making is the patterning of the fly’s eye. Compound fly eyes

consist of hundreds of ommatidia, each of which harbor eight

photoreceptors, two of which (R7 and R8) are responsible for

color vision. Based on rhodopsin (Rh) expression in these photo-

receptors, the corresponding ommatidia can become pale or
yellow. The pale/yellow choice occurs in the photoreceptor R7

of each ommatidium: if R7 expresses Rh3, then the ommatidium

becomes pale, whereas if it expresses Rh4, the ommatidium

becomes yellow. R7’s choice is then transferred to R8 and stabi-

lized through a positive feedback loop between the regulators

warts and melted. Pale and yellow ommatidia are randomly

localized and make up 30% and 70% of the fly eye, respectively,

suggesting that their positioning results from stochastic cell fate

choices. This random patterning can be abolished by the dele-

tion or overexpression of the transcription factor spineless,

which changes the retinal mosaic into uniformly pale and yellow,

respectively (Wernet et al., 2006).

Fruit fly development suggests that gene expression noise and

stochastic cell fate choices are carefully controlled and often

suppressed, except when they are not disruptive for develop-

mental patterning (Boettiger and Levine, 2009) or when they

are exploited to assign random cell fates with desired probabili-

ties (Wernet et al., 2006).What happens if noise suppression fails

and fluctuations escape from control? This was examined by

monitoring mRNA expression in single cells during C. elegans

development (Raj et al., 2010) in a regulatory cascade composed

ofmultiple feed-forward loops controlling the expression of elt-2,

a self-activating transcription factor that is critical for intestinal

cell fate specification (Figure 5C). After the 65-cell stage, elt-2

expression was high in all cells of all wild-type worm embryos.

However, this uniform expression pattern became variable

from embryo to embryo and bimodal within individual embryos

after mutation of the transcription factor skn-1, which sits at

the top of the regulatory hierarchy in Figure 5C, and caused

lack of intestinal cells in some, but not all, embryos. Similar

phenomena, when genetically identical individuals carrying the

same mutation show either disrupted or wild-type phenotype,

are called partial penetrance.

Counting individual mRNAs in all cells of hundreds of embryos,

Raj et al. observed sequential activation of the genes in Figure 5C

during development from the top toward the bottom of the hier-

archy, with med-1/2 exhibiting an early spike of expression,

accompanied by a wider end-3 spike and a prolonged but still

transient high expression period of end-1. The outcome of these

gene expression events was high and stable elt-2 expression

and proper intestinal cell fate specification. By contrast, in the

skn-1 mutant, the expression of all genes was diminished or

absent, and the majority of embryos had practically no elt-2

expression. Moreover, end-1 expression was highly variable

within individual embryos, indicating that skn-1mutations relieve

pre-existing noise suppression, thereby allowing stochastic

cell fate decisions to occur. Downregulation of the histone

deacetylase hda-1 partially rescued the skn-1 mutant pheno-

type, indicating that chromatin remodeling was one source of

end-1 noise unveiled in skn-1 mutant embryos. However, dele-

tion of upstream transcription factors other than skn-1 (i.e.,

med-1/2, end-3) did not cause a comparably detrimental reduc-

tion of end-1 levels. Taken together, these data suggest that

these intermediate transcription factors act in a redundant

fashion, buffering noise in the system and ensuring sufficiently

high end-1 expression, which can then switch the elt-2 positive

feedback loop to the high expression state, ensuring reliable

intestinal cell fate specification.
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Figure 6. Embryonic Stem Cell Decision

Making in Mammals
(A) The Nanog-Oct4 gene regulatory network
primes ESC differentiation. Regulatory interac-
tions mediating positive and negative feedback
are shown in red and blue, respectively. Regula-
tory interactions that participate in both positive
and negative feedback loops are shown in light
blue. Arrowheads indicate activation; blunt arrows
indicate repression.
(B) Nullclines for Nanog and Oct4, based on the
model from Kalmar et al. (Kalmar et al., 2009). The
nullclines intersect only once, corresponding to
a single stable steady state.
(C) Potential calculated along the nullcline
d[Nanog]/dt = 0, based on the Fokker-Planck
approximation. The filled circle on the right indi-
cates theonly stable steady state. Thegray shaded
area is inaccessible because it corresponds to
nonphysical solutions. The system undergoes
transient excursions to the left (low Nanog
concentrations) under the influence of molecular
noise. This will prime the ESCs for differentiation
if appropriate signals are present.
These examples together indicate that the noise of certain

genes is suppressed and buffered by a variety of mechanisms

(such as spatial and temporal averaging, stalled polymerases,

and redundant regulation) during the development of lower

metazoans. Consequently, cellular decision making is generally

suppressed unless specifically required for developmental

patterning (as for the ommatidia of the composite fly eye) or

unless it is harmless (does not interfere with the execution of

the overall developmental program). Disruption of the noise

control mechanisms unmasks noise and can have detrimental

effects on the development of the organism. Noise control during

development may resemble the apparent suppression of cellular

individuality during quorum sensing, which triggers population-

wide behavior in microbes. These and similar open questions

can be properly addressed in the context of social evolution

theory (West et al., 2006). On the experimental side, much

remains to be discovered about the consequences of ‘‘letting

noise loose’’ during development. For example, once the factor

that is responsible for spatial averaging across fruit fly nuclei

(Gregor et al., 2007) is identified, it would be interesting to

examine how fly development tolerates the inhibition of this

internuclear communication.

Mammals
Embryonic development is highly conserved among mammals:

after a few divisions of the fertilized egg, the resulting cells

quickly advance to the blastocyst stage, which manifests as

a spherical trophectoderm surrounding the inner cell mass.

The inner cell mass consists of pluripotent embryonic stem

(ES) cells that are capable of differentiating into any cell type in

the future organism. Therefore, efficiently isolating andmaintain-

ing ES cells in laboratory conditions holds exceptional potential

for future medical applications.

However, to truly exploit the pluripotency of stem cells, it is

essential to understand and control the processes underlying

their differentiation into various tissues. Moreover, the recent

success of reverting differentiated cells into induced pluripotent

stem (iPS) cells (Takahashi and Yamanaka, 2006) poses further
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questions about the efficiency and stability of this reversal. Is

differentiation into specific cell types solely the result of cellular

decision making, or is it somewhat controllable? To what degree

is differentiation reversible, and can the rate of induced pluripo-

tency be increased?Andwhat is the role of noise in pluripotency?

Nanog is a critical pluripotency marker whose expression is

lost during ES cell differentiation, and it is maintained at a high

level only in pluripotent cells. Following in the footsteps of

Chambers et al., who showed stochastic Nanog expression

corresponding to attempts of ES cell differentiation (Chambers

et al., 2007), Kalmar et al. monitored single ES cells and embry-

onal carcinoma (EC) cells to better understand Nanog dynamics

(Kalmar et al., 2009). Both cell lines had a surprisingly strong,

bimodal heterogeneity of Nanog expression that involved

transitions between the high and low expression states. Consis-

tent with Nanog’s function, cells with low expression responded

better to differentiation signals. Analyzing the dynamics of the

gene regulatory network controlling Nanog expression (Fig-

ure 6A), the authors suggested that the system was excitable

rather than bistable, giving rise to a small ES cell subpopulation

with low Nanog expression through occasional random

excursions from the high to the low expression state (Figures

6B and 6C). Though this expression pattern is opposite to

ComK dynamics during competence initiation in B. subtilis, it

relies on a gene regulatory network of similar structure, involving

nested positive and negative feedback loops, namely: mutual

Oct4 and Nanog activation, Oct4 and Nanog autoregulation,

and Nanog repression by Oct4. However, because the network

underlying ES cell pluripotency is not completely known, it

cannot yet be excluded that the high- and low-Nanog subpopu-

lations result from noise-induced transitions in a bistable system

(Chickarmane et al., 2006; Glauche et al., 2010; Kalmar et al.,

2009). Indeed, the source of noise driving Nanog excursions

into the low expression state remains elusive, especially consid-

ering that high molecular levels are often associated with low

noise. Gene expression bursts (Raj et al., 2006) may offer a solu-

tion, as highly expressed proteins can be noisy provided that

they are expressed in bursts (Newman et al., 2006).



Differentiation is accompanied by loss of Nanog expression,

in addition to downregulation of Oct4 and Sox2, the other tran-

scription factors responsible for the maintenance of Nanog

expression and pluripotency. Contrary to the early belief that

differentiatedcells cannot return to thepluripotent state, Takahasi

and Yamanaka (Takahashi and Yamanaka, 2006) found that

controlled upregulation of Oct4, Sox2, Klf4, or c-Myc can convert

fully differentiated cells into iPS cells. However, such iPS cells

were remarkably difficult to obtain and appeared as only aminus-

cule percentage in large differentiated cell populations exposed

to identical genetic and environmental perturbations. Trying to

understand the enigmatic source of iPS cells, two possible

scenarios for their generation were proposed (Yamanaka,

2009): the elite model assumed pre-existing differences respon-

sible for reversal to the iPS cell state, whereas the stochastic

model assumed that reversal occurred by random chance, even

without any pre-existing differences. The dichotomy of these

models is analogous to the contrasting views of deterministic

versus stochastic dynamics on Waddington’s landscape, as

well as the recent controversy on the predictability of the lambda

switch (St-Pierre and Endy, 2008; Zeng et al., 2010).

A recent study set out to test experimentally the validity of the

elite versus the stochastic model in iPS cell induction (Hanna

et al., 2009). Differentiated murine B cells were identically

prepared to harbor inducible copies of Oct4, Sox2, Klf4, and

c-Myc and to express Nanog-GFP once reversal to the iPS

state occurred. A large number of clonal populations established

from such B cells were maintained in constant conditions

continuously for several months, and the appearance of iPS cells

was monitored over time. The first iPS cells appeared after

2–3 weeks, followed by other iPS reversals as time progressed.

Toward the end of the experiment, nearly every clonal population

(93%) had a significant number of iPS cells, demonstrating that

obtaining the iPS state is just a matter of time and patience, as

some descendants of every B cell were capable of returning to

the pluripotent state (also confirmed by their ability to generate

teratomas and chimaeras). These findings strongly support the

stochastic model of induced pluripotency. The authors also

studied the influence of overexpressing p53, p21, Lin28, or

Nanog (in combination with all of the iPS-inducing factors

Oct4, Sox2, Klf4, and c-Myc) on the speed of reversal to the

iPS state. All of these additional perturbations were found to

increase the rate of reversals to the iPS state but for different

reasons.Whereas p53, p21, and Lin28 increased the cell division

rate and had an effect by raising the B cell population size while

leaving the reversal rate per individual B cell unaffected, Nanog

overexpression had a significant effect even after adjusting for

growth rate differences.

Considering these studies demonstrating the role of noise in

ES cell differentiation and the induction of pluripotency, it is

intriguing to ask whether there is a role for cellular decision

making in adult mammals. One of the first studies to address

this question focused on adult progenitor cells (a multipotent

hematopoietic stem cell line) (Chang et al., 2008), observing

that the expression of the stem cell marker Sca-1 varied over

three orders of magnitude across this cell population. Sorting

the cells into distinct subpopulations based on their expression

revealed that the variability in Sca-1 levels was dynamic: all
sorted populations relaxed to the original distribution in

�9 days. The variability was found to reflect predisposition for

certain cell fates because cells with low Sca-1 expression had

relatively high expression of the erythroid differentiation factor

Gata1 and lower expression of the myeloid differentiation factor

PU.1. Accordingly, upon stimulation with erythropoietin, low

Sca-1-expressing cells differentiated much faster into erythro-

cytes than their peers with high Sca-1 expression. Moreover,

the differences among the original pluripotent stem cells were

not restricted to these two differentiation factors: microarray

analysis revealed additional genome-wide differences in gene

expression between three subpopulations sorted by their

Sca-1 expression (Sca-1low, Sca-1mid, and Sca-1high).

In addition to cell differentiation, one of the most important

processes recently shown to rely on cellular decision making is

apoptosis (Spencer et al., 2009). These authors followed by

microscopy the fate of sister cell lineages exposed to a ‘‘mortal’’

agent: tumor necrosis factor-related apoptosis inducing ligand

(TRAIL) in two clonal cell lines (HeLa and MCF10A). A striking

heterogeneity in cell fate was observed. Some cells never

died, and those that died showed a highly variable time

between TRAIL exposure and commitment to programmed cell

death (indicated by caspase activation or mitochondrial outer-

membrane permeabilization). Moreover, sister cells that died

soon after TRAIL exposure showed synchronous commitment

to apoptosis, whereas those that died later showed gradually

decreasing correlation between their times of death, indicating

that these suicidal decisions depended on factors inherited

from the mother cell that gradually and stochastically diverged

as daughter cells divided over time. Measuring the concentra-

tions of five apoptosis-related proteins in single cells, together

with a mathematical model of TRAIL-induced apoptosis allowed

the authors to conclude that most stochastic variation in the

commitment to cell death was due to initiator procaspase

activity that cleaves the apoptotic regulator BH3 interacting

domain death agonist (BID) into the truncated form tBID. When

tBID hits a threshold, this sets off an irreversible avalanche of

molecular interactions that culminate in apoptosis.

In summary, these examples from mammalian cells indicate

that cellular decision making underlies the most basic cellular

processes in some of the most complex organisms, relying on

regulatory networkswith dynamics similar to those found in lower

metazoans and microbes. However, the exact structure of the

regulatory mechanisms controlling mammalian cell decisions is

much less understood than for lower organisms and may involve

cytoskeleton dynamics (Ambravaneswaran et al., 2010), subcel-

lular localization, posttranslational modification, microRNA-

based regulation, or other yet unknown mechanisms. Moreover,

the studies discussedabovewere conducted in cell lines, andnot

actual mammals, and very little is known about mammalian cell

fate choices in vivo. To start overcoming this gap, it will be impor-

tant to compare and analyze cellular decision making from

microbes and lower metazoans from an evolutionary perspec-

tive, hoping to learn lessons applicable to mammals.

Conclusions, Challenges, and Open Questions
Here, we reviewed several examples of cellular decision making

at multiple levels of biological organization. The generality of this
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phenomenon suggests that we are dealing with a fundamental

biological property, which many organisms evolved to utilize

due to the benefits of task allocation in isogenic cell populations.

Cellular decision making combined with environmental sensing

and cell-cell communication are three key processes underlying

pattern formation and development frommicrobes to mammals.

Moreover, viral decision making suggests that some form of

random diversification may have been present even before cells

existed. In fact, the phrase ‘‘cellular decision making’’ is an

oxymoron because these decisions actually occur at the level

of gene regulatory networks such as the ones highlighted in

this Review. Cells only provide microscopic meeting places for

the real key players: genes connected into regulatory networks

(Dawkins, 2006).

Several conclusions can be drawn from the examples dis-

cussed above. First, cellular decision making is frequently based

on networks with multiple nested feedback loops, at least one of

which ispositive. The roleof these feedback loops in variousdeci-

sion-making circuits remains to be determined, but it appears

that positive feedback makes cellular decisions stable, whereas

negative feedback makes them more easily reversible. Studying

the dynamics ofmultiple feedback loops and their role in differen-

tiation and development has much insight to offer (Brandman

et al., 2005; Ray and Igoshin, 2010; Tiwari et al., 2010). Second,

these networks appear to operate in parameter regimes enabling

either bistable or excitable dynamics. Third, cellular decision

making relies on intrinsic molecular noise, which induces transi-

tions between steady states in bistable systems and transient

excursions of gene expression in excitable systems. Fourth, as

a consequence of the above, all cellular decisions are reversible

from a theoretical point of view, although, in practice, this may

not occur due to the irreversibility of secondary effects triggered

by cellular decision making (such as cell lysis or apoptosis).

The importance of intrinsic noise in cellular decision making

has been questioned in a number of recent papers, which found

that pre-existing differences in cell size, virus copy number,

microenvironments, etc., may explain to a significant degree

cell fate decisions (St-Pierre and Endy, 2008; Weitz et al.,

2008). However, whereas the variability in cell-fate choices

was somewhat reduced after accounting for certain newly iden-

tified factors, viral decisions were by far not entirely deterministic

(Zeng et al., 2010). Though it may be tempting to expect that

increasingly detailed measurements of the structure and proper-

ties of single cells may enable the exact prediction of cell fate,

this hope is unlikely to be fully realized. Imagine for a moment

that we could find two cells of exactly the same size and molec-

ular composition and place them into the same environment.

These cells could then theoretically have the same fate if all of

their corresponding molecules would be in identical positions

and would have identical velocities at a given time. However,

this condition can never be satisfied in practice because the

probability of finding all of the molecules in the same state (posi-

tion, velocity, etc.) is infinitesimally small. Therefore, noise is

inherent to gene networks confined to small compartments,

such as cells or artificial microscopic compartments (Doktycz

and Simpson, 2007), and cannot be eliminated.

Instead, researchers should strive to understand and control

noise increasingly better in order to control cell fate decisions.
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Whereas noise makes individual cells somewhat uncontrollable,

the same may not be the case for large clonal cell populations,

which can develop reliable patterns from unreliable elements

due to the sheer power of statistics. For example, repeatedly

tossing 100 fair coinswill very likely result in nearly equal numbers

of heads and tails, even though the fate of the individual coins is

unpredictable. In the same way, the fly eye will reliably consist of

30% pale and 70% yellow ommatidia, even though the fate of

individual ommatidia prior to patterning is uncertain. Synthetic

gene networks capable of controlling gene expression noise

(Murphy et al., 2010), the rate of random phenotypic switching

(Acar et al., 2005), or the duration variability of transient differen-

tiation episodes (Ça�gatay et al., 2009) may be useful in the future

for adjusting the rate and outcome of cellular differentiation.

Finally, a major challenge is to understand how cellular deci-

sion making evolves under well-defined conditions. As dis-

cussed above, stochastic cellular fate choices lead to cell popu-

lation diversity, the simplest possible developmental pattern

within isogenic cell populations. Such population-level charac-

teristics are, however, conferred by gene networks carried by

every individual cell in these populations, and stochastic diversi-

fication may ultimately serve the propagation of their constituent

genes (Dawkins, 2006). Phenotypic diversity implies that some

individual phenotypic variants will have low direct fitness and

will be at a disadvantage without stress, whereas others will

perish when the environment becomes stressful. However, in

specific cases, this type of sacrifice can be justified by Hamil-

ton’s rule (Hamilton, 1964), considering that the relatedness

between clonal individual cells is maximal, and the survival of

any individual will propagate the same genome. This may allow

for kin selection, as suggested by recent theoretical work

(Gardner et al., 2007). On the experimental side, laboratory

evolution of microbes in fluctuating environments may offer

exciting opportunities to address these questions (Cooper and

Lenski, 2010), as exemplified by the recent experimental evolu-

tion of random phenotypic switching (Beaumont et al., 2009).

More generally, it will be interesting to examine from the

perspective of social evolution (West et al., 2006) the formation

of complex biological patterns, which may involve altruism

(Lee et al., 2010), selfishness, spite, and various forms of coop-

eration in addition to stochastic cell fate choices. Observation of

patterns in growing microbial colonies (Ben-Jacob et al., 1998)

has lead to the proposal of considering microbes as multicellular

organisms (Shapiro, 1998). Though criticized by researchers

from the field of social evolution (West et al., 2006), this proposal

brings up an interesting question: which microbial patterns are

functional, and when can patterns evolve? Because patterns

form readily in nonliving systems due to purely physical reasons,

it will be interesting to examine, in the context of sociobiology

(West et al., 2007), the conditions when a cell population

becomes a multicellular organism (Queller and Strassmann,

2009) and whether specific biological patterns have biological

function subject to population-level selection.
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Ça�gatay, T., Turcotte, M., Elowitz, M.B., Garcia-Ojalvo, J., and Süel, G.M.

(2009). Architecture-dependent noise discriminates functionally analogous

differentiation circuits. Cell 139, 512–522.

Chambers, I., Silva, J., Colby, D., Nichols, J., Nijmeijer, B., Robertson, M.,

Vrana, J., Jones, K., Grotewold, L., and Smith, A. (2007). Nanog safeguards

pluripotency and mediates germline development. Nature 450, 1230–1234.

Chang, H.H., Hemberg, M., Barahona, M., Ingber, D.E., and Huang, S. (2008).

Transcriptome-wide noise controls lineage choice in mammalian progenitor

cells. Nature 453, 544–547.

Chickarmane, V., Troein, C., Nuber, U.A., Sauro, H.M., and Peterson, C.

(2006). Transcriptional dynamics of the embryonic stem cell switch. PLoS

Comput. Biol. 2, e123.
Cooper, T.F., and Lenski, R.E. (2010). Experimental evolution with E. coli in

diverse resource environments. I. Fluctuating environments promote diver-

gence of replicate populations. BMC Evol. Biol. 10, 11.

Dawkins, R. (2006). The Selfish Gene: 30th Anniversary Edition, 30th anniver-

sary edn (New York: Oxford University Press).

Di Talia, S., Skotheim, J.M., Bean, J.M., Siggia, E.D., and Cross, F.R. (2007).

The effects of molecular noise and size control on variability in the budding

yeast cell cycle. Nature 448, 947–951.

Doktycz, M.J., and Simpson, M.L. (2007). Nano-enabled synthetic biology.

Mol. Syst. Biol. 3, 125.

Elowitz, M.B., Levine, A.J., Siggia, E.D., and Swain, P.S. (2002). Stochastic

gene expression in a single cell. Science 297, 1183–1186.

Galhardo, R.S., Hastings, P.J., and Rosenberg, S.M. (2007). Mutation as

a stress response and the regulation of evolvability. Crit. Rev. Biochem. Mol.

Biol. 42, 399–435.

Gardner, A., West, S.A., and Griffin, A.S. (2007). Is bacterial persistence

a social trait? PLoS ONE 2, e752.

Gardner, T.S., Cantor, C.R., and Collins, J.J. (2000). Construction of a genetic

toggle switch in Escherichia coli. Nature 403, 339–342.

Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz,

G., Botstein, D., and Brown, P.O. (2000). Genomic expression programs in

the response of yeast cells to environmental changes. Mol. Biol. Cell 11,

4241–4257.

Gillespie, D.T. (1977). Exact stochastic simulation of coupled chemical

reactions. J. Phys. Chem. 81, 2340–2361.

Glauche, I., Herberg, M., and Roeder, I. (2010). Nanog variability and pluripo-

tency regulation of embryonic stem cells—insights from amathematical model

analysis. PLoS ONE 5, e11238.

Goldstein, A.M., and Nagy, N. (2008). A bird’s eye view of enteric nervous

system development: lessons from the avian embryo. Pediatr. Res. 64,

326–333.

Gregor, T., Tank, D.W., Wieschaus, E.F., and Bialek, W. (2007). Probing the

limits to positional information. Cell 130, 153–164.

Hamilton, W.D. (1964). The genetical evolution of social behaviour. I. J. Theor.

Biol. 7, 1–16.

Han, Y., Wind-Rotolo, M., Yang, H.C., Siliciano, J.D., and Siliciano, R.F. (2007).

Experimental approaches to the study of HIV-1 latency. Nat. Rev. Microbiol. 5,

95–106.

Hänggi, P., Grabert, H., Talkner, P., and Thomas, H. (1984). Bistable systems:

Master equation versus Fokker-Planck modeling. Phys. Rev. A 29, 371–378.

Hanna, J., Saha, K., Pando, B., van Zon, J., Lengner, C.J., Creyghton, M.P.,

van Oudenaarden, A., and Jaenisch, R. (2009). Direct cell reprogramming is

a stochastic process amenable to acceleration. Nature 462, 595–601.

Holloway, D.M., Harrison, L.G., Kosman, D., Vanario-Alonso, C.E., and Spirov,

A.V. (2006). Analysis of pattern precision shows that Drosophila segmentation

develops substantial independence from gradients ofmaternal gene products.

Dev. Dyn. 235, 2949–2960.

Jablonka, E., and Raz, G. (2009). Transgenerational epigenetic inheritance:

prevalence, mechanisms, and implications for the study of heredity and

evolution. Q. Rev. Biol. 84, 131–176.

Kaern, M., Elston, T.C., Blake, W.J., and Collins, J.J. (2005). Stochasticity in

gene expression: from theories to phenotypes. Nat. Rev. Genet. 6, 451–464.

Kalmar, T., Lim, C., Hayward, P., Muñoz-Descalzo, S., Nichols, J., Garcia-

Ojalvo, J., and Martinez Arias, A. (2009). Regulated fluctuations in nanog

expression mediate cell fate decisions in embryonic stem cells. PLoS Biol. 7,

e1000149.

Kirk, D.L. (2005). A twelve-step program for evolving multicellularity and a divi-

sion of labor. Bioessays 27, 299–310.

Klumpp, S., Zhang, Z., and Hwa, T. (2009). Growth rate-dependent global

effects on gene expression in bacteria. Cell 139, 1366–1375.

Koonin, E.V., Senkevich, T.G., and Dolja, V.V. (2006). The ancient Virus World

and evolution of cells. Biol. Direct 1, 29.
Cell 144, March 18, 2011 ª2011 Elsevier Inc. 923



Kussell, E., and Leibler, S. (2005). Phenotypic diversity, population growth, and

information in fluctuating environments. Science 309, 2075–2078.

Lee, H.H., Molla, M.N., Cantor, C.R., and Collins, J.J. (2010). Bacterial charity

work leads to population-wide resistance. Nature 467, 82–85.

Long, T., Tu, K.C., Wang, Y., Mehta, P., Ong, N.P., Bassler, B.L., and

Wingreen, N.S. (2009). Quantifying the integration of quorum-sensing signals

with single-cell resolution. PLoS Biol. 7, e68.

Lopez, D., Vlamakis, H., and Kolter, R. (2009). Generation of multiple cell types

in Bacillus subtilis. FEMS Microbiol. Rev. 33, 152–163.

Maamar, H., Raj, A., and Dubnau, D. (2007). Noise in gene expression deter-

mines cell fate in Bacillus subtilis. Science 317, 526–529.

Maheshri, N., and O’Shea, E.K. (2007). Living with noisy genes: how cells func-

tion reliably with inherent variability in gene expression. Annu. Rev. Biophys.

Biomol. Struct. 36, 413–434.
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