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Leveraging The Cancer Genome Atlas (TCGA) multidimensional data in glioblas-
toma, we inferred the putative regulatory network between microRNA and mRNA 

using the Context Likelihood of Relatedness modeling algorithm. Interrogation of the network in 
context of defi ned molecular subtypes identifi ed 8 microRNAs with a strong discriminatory potential 
between proneural and mesenchymal subtypes. Integrative in silico analyses, a functional genetic 
screen, and experimental validation identifi ed miR-34a as a tumor suppressor in proneural subtype 
glioblastoma. Mechanistically, in addition to its direct regulation of platelet-derived growth factor 
receptor-alpha (PDGFRA), promoter enrichment analysis of context likelihood of relatedness–inferred 
mRNA nodes established miR-34a as a novel regulator of a SMAD4 transcriptional network. Clinically, 
miR-34a expression level is shown to be prognostic, where miR-34a low-expressing glioblastomas 
exhibited better overall survival. This work illustrates the potential of comprehensive multidimensional 
cancer genomic data combined with computational and experimental models in enabling mechanistic 
exploration of relationships among different genetic elements across the genome space in cancer.

SIGNIFICANCE: We illustrate here that network modeling of complex multidimensional cancer genomic 
data can generate a framework in which to explore the biology of cancers, leading to discovery of new 
pathogenetic insights as well as potential prognostic biomarkers. Specifi cally in glioblastoma, within the 
context of the global network, promoter enrichment analysis of network edges uncovered a novel regu-
lation of TGF-β signaling via a Smad4 transcriptomic network by miR-34a. Cancer Discov; 2(8); 736–49. 
©2012 AACR.
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in clinical outcome of the patients (2, 3), enrichment of 
different genomic and epigenetic alterations within each 
subtype, and differential activation of major signaling 
pathways (4, 5).

Noncoding RNAs have emerged as an important class of 
regulatory molecules in both normal and neoplastic develop-
ment. MicroRNA (or miR) is a class of noncoding small RNAs 
produced by RNA polymerase II as hairpins of longer precur-
sor RNAs that are subsequently processed to approximately 
22-nt-long fragments by RNase III enzymes, Drosha and 
Dicer. Mature miRs regulate gene expression by promoting 
mRNA degradation or by inhibiting mRNA translation (6, 7). 
The connection between miRs and cancer was fi rst implicated 
by their genomic alteration and dysregulated expression in 
various human tumors (8–12). Multiple miRs have since 
been identifi ed to promote or suppress oncogenesis in vari-
ous tumors, presumably by modulating gene expression in 
the oncogenic and tumor suppressor networks. In addition, 
recent studies have proposed new mechanisms of miR–mRNA 
regulation such as modulation of mRNA with competitive 
miR-binding sites (sponge interactions) or mRNAs that affect 
constituents of the miR regulatory machinery (nonsponge 
interactions; refs. 13–15).

Global views of the relationship between miR and mRNA 
expression have been reported. For instance, Su and col-
leagues (16) used integrative genomics and genetic tech-
niques to characterize the roles of mouse miRs within the 
mouse liver miR–mRNA network; Dong and colleagues (17) 
deciphered the pathway connecting mutations under the 
glioblastoma miR–mRNA expression network; Mestdagh 
and colleagues (18) established the miR body map online 
resource to dissect miR function through integrative genom-
ics; Grigoryev and colleagues (19) presented the genome-wide 

INTRODUCTION

Glioblastoma is the most common primary brain tumor 
in adults. Patients with newly diagnosed glioblastoma 
have a median survival of 12 mon ths with generally poor 
responses to chemoradiotherapy (1). Recent genome-wide 
profi ling studies have shown extensive genetic heterogene-
ity among glioblastoma samples with distinct molecular 
subtypes; that these transcriptomic subtypes refl ect distinct 
underlying biology is supported by observed differences 
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miR  regulation of T-lymphocyte activation through the 
mapped miR, mRNA, and protein networks; and Sharbati 
and colleagues (20) studied macrophage infection via an inte-
grated miR–mRNA network. In these global integrative miR–
mRNA network analyses, either general correlation coeffi cient 
methods (16–18) or putative miR target prediction methods 
(19, 20) have been used to construct or map miR–mRNA 
connections. These approaches preferentially quantify linear 
dependencies between pairwise variables.

Recognizing that the functional relationship between 2 
variables in cancer is not necessarily linear, we explored 
a mutual information–based approach in this work that 
scores miR–mRNA interaction strength on the basis of rel-
evant expression contexts. This mutual information–based 
approach has been used recently by Sumazin and colleagues 
(13) to uncover a novel class of modulators of miR–mRNA 
interactions. Here, we applied the Context Likelihood of 
Relatedness (CLR; ref. 21) network modeling algorithm to 
generate pairwise measures of associations on the basis of 
mutual information through calculation of the entropy. At 
the heart of the CLR algorithm is a unique statistical back-
ground correction test which uses the full set of mutual 
information values to estimate a signifi cance value for each 
miR–mRNA pair under a given observed network context (see 
Supplementary Information). The algorithm evaluates the 
mutual information value of a miR–mRNA pair against the 
background mutual information distribution of all mRNAs 
in the data set with the miR, as well as with the distribution of 
mutual information values of all miRs with the mRNA under 
consideration. A combined z-score summarizing these 2 com-
parisons is generated, and the list of all such pairwise z-scores 
is subsequently used to generate P values by comparing with 
the normal distribution. A stringent false discovery rate of 
5% is fi nally applied to identify putative miR–mRNA regula-
tory edges. Interactions whose mutual information values are 
outliers in the right tails of the pertinent context background 
distributions of mutual information scores have the greatest 
likelihood of being identifi ed as signifi cant. This background 
correction method allows the CLR algorithm to fi lter out 
those edges between miRs and mRNA that have spurious 
similarities with large numbers of other gene–miR species.

The Cancer Genome Atlas (TCGA) has characterized the 
genomes of glioblastoma on multiple dimensions including 
coding and noncoding RNAs (22). We applied the CLR mod-
eling algorithm to this multidimensional data set to infer 
putative regulatory relationships (edges) between miRs and 
mRNAs in glioblastoma. Specifi cally, we were interested in 
directional miR–mRNA interactions where the miR downreg-
ulates mRNA expression either directly through binding or 
indirectly through intermediary effectors. Against this  global 
network, we explored the functional relationship between 
miRs and mRNAs in gliomagenesis.

RESULTS

Global miR and mRNA Regulatory 
Network in Glioblastoma

To explore the relationship between miRs and mRNAs, 
we applied the CLR network algorithm to miR and mRNA 
transcriptome data from 290 glioblastoma samples from the 

TCGA (Supplementary Table S1). A total of 26,297 edges 
between 254 miR and 6,152 mRNA nodes were defi ned (Sup-
plementary Table S2). Next, we integrated genome-wide copy 
number profi les with the inferred edges of the network with 
the assumption that biologically relevant miRs or mRNAs 
are likely to show additional levels of dysregulation across 
the samples. Here, we found that a third (34.1%) of the miR 
nodes or mRNA nodes in the CLR network resided in regions 
of copy number aberration in glioblastoma and 3.9% involved 
both miR and mRNA that are localized in regions of genomic 
alterations (Fig. 1A and B). This integrative analysis thus 
prioritized 1,018 edges involving 69 miRs and 467 mRNAs 
nodes as candidates with likely biologic importance.

To further rank the above nodes, we next applied a putative 
direct-target fi lter. Specifi cally, on the basis of previous fi nd-
ings showing that miRs downregulate their target mRNAs 
by binding to their 3′-untranslated regions (UTR; ref. 6), we 
defi ned a subset of mRNA nodes as putative direct targets 
of their miR nodes on the basis of the following parameters: 
(i) a signifi cant negative correlation (Pearson correlation 
coeffi cient ≤ −0.3) between expression of miR and mRNA 
and (ii) sequence-based prediction of interaction in all 3 
sequence-based prediction databases, namely, PicTar, Target-
Scan, and miRanda (23–27). This in silico analysis identifi ed 
3 edges involving 6 of the 536 prioritized nodes as represent-
ing putative direct interactions, namely, miR-34a:PDGFRA; 
mir-27a:CPEB3; and miR-23a:ARHGEF7. The same trend 
is observed with the global CLR network edges, where 45 
(0.17%) of the 26,297 CLR-inferred edges were predicted com-
putationally to be direct (Fig. 1C; Supplementary Table S3). 
This suggests that a signifi cant proportion of the putative 
miR–mRNA relationships may be indirect, possibly mediated 
via intermediaries such as transcription factors (see below).

Functional Analyses of 
Subtype-Discriminant miR Nodes

Next, we asked whether the CLR-inferred global network 
captures the salient transcriptomic features of the 4 molecu-
lar subtypes of glioblastoma. Here, we looked for edges 
that are unique to each molecular subtype (Supplementary 
Table S4) as well as differential expression of the miR and 
mRNA nodes between any 2 molecular subtypes. We found 
that the variability among molecular subtypes appeared to 
be the predominant driver of relationships defi ned by CLR 
(Supplementary Fig. S1). For example, 67% (n = 17,934) 
of the network edges involved miR and mRNA that are 
differentially expressed (P < 0.001) between 2 molecular 
subtypes. While the difference in expression between the 
subtype signature genes is not surprising, it is striking that 
the CLR-identifi ed miRs associated with these genes show 
a reciprocal and opposite change of expression along with 
their mRNA nodes. In particular, the greatest transcriptomic 
shift was observed between proneural and mesenchymal sub-
types with nearly half of the edges in the global network (or 
12,673 edges, 48%) marked by expression differences between 
them. This observation suggested that miR regulation of 
mRNA may play a role in defi ning the molecular signatures 
of these 2 subtypes. To this end, we looked for CLR-inferred 
edges among the 685 signifi cantly overexpressed genes 
used by  Verhaak and colleagues (3) for subtype pathway/
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Gene Ontology (GO) enrichment analysis. Of these 685 genes, 
506 of them (73%) have inferred edges to a miR node in the 
global CLR network. Conversely, of the 2,984 inferred edges to 
these 506 subtype classifi er genes, a disproportionate number 
(70%) are part of either the proneural or mesenchymal sub-
type signatures (e.g., 328 to classical, 560 to neural, 858 to 
proneural, and 1,238 to mesenchymal signature genes), sug-
gesting that miR–mRNA regulation may contribute to gene 
signatures underlying these 2 molecular subtypes. Indeed, 8 
miR nodes (P < 0.001) were found to be highly discrimina-
tory between proneural and mesenchymal subtypes (Fig. 2A; 
see Supplementary Methods). Five of these miR nodes (miR-
22, miR-34a, miR-223, miR-142-3p, and miR-142-5p) are 
underexpressed in proneural-subtype glioblastomas, harbor-
ing inferred negative edges with proneural signature genes; 
conversely, 3 of them (miR-9, miR-181c, and miR-181d) are 
underexpressed in mesenchymal-subtype glioblastoma with 

inferred negative edges with mesenchymal signature genes 
(Fig. 2B). When integrated with copy number and expression 
profi les as well as putative direct-target prediction as above 
(Supplementary Table S5), we found that miR-34a is the only 
one that also resides in a region of frequent loss and harbors a 
putative direct CLR edge to PDGFRA (platelet-derived growth 
factor receptor-alpha), a well-known proneural signature gene 
that is also a target of genomic amplifi cation.

Next, we sought evidence that these 8 miRs are function-
ally active in a proneural context. Recognizing the limitation 
of established cell systems in modeling proneural molecu-
lar subtype, we fi rst investigated whether a genetically engi-
neered mouse (GEM) model of glioblastoma constructed 
with concomitant p53 and Pten deletion in neural stem cells 
(NSC) and neural progenitors (Gfap-Cre;p53L/L;PtenL/+) can 
be considered an appropriate model of proneural glioblas-
toma (28). Here, we conducted gene set enrichment analysis 
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Figure 1. Integrative analyses of CLR network in context of copy number alterations and direct target prediction. A, CLR network grouped by con-
nectivity among miRs and mRNAs in regions of copy number aberration. Size of the node represents the number of edges between the miR and mRNAs 
in each group. There are 9 subnetworks represented. Edges in the network where both participating miR and mRNA are in regions of copy number altera-
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genomic alterations in glioblastoma (blue circle). B, network of CLR edges where both miR (diamonds) and mRNA (circles) are in regions of copy number 
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(GSEA; ref. 29) of the transcriptomes of premalignant p53/Pten 
double-null E13 embryonic NSC (Gfap-Cre;p53L/L;PtenL/L) and 
tumor spheroids isolated from malignant gliomas developed 
in the context of p53 and Pten defi ciency (Gfap-Cre;p53L/L;PtenL/+; 
Supplementary Fig. S2A). As shown in Fig. 2C and Supplemen-
tary Fig. S2B, signifi cant enrichments for the proneural sig-
nature genes were observed in both premalignant embryonic 
NSCs and in malignant tumor spheroids (P = 3.66 × 10−12 and 
P = 2.2 × 10−16, respectively), thus substantiating the p53/Pten 
double-null model as a proneural model. Next, we enforced 
expression of the miR precursors corresponding to the 8 
subtype discriminant miRs in premalignant p53/Pten−/− NSCs 
(Supplementary Fig. S3). As summarized in Fig. 2D, both miR-
34a and miR-142 signifi cantly inhibited tumorigenesis of p53/

Pten−/−E13 NSCs in vivo, suggesting tumor-suppressive activity 
in this context. In summary, subtype-discriminant miRs are 
functionally active in proneural glioblastoma context.

miR-34a Expression Is Prognostic in Glioblastoma
To explore the potential clinical relevance of subtype-dis-

criminant miRs in human glioblastoma, we asked whether 
their expression tracks with any clinical parameters, particu-
larly prognosis (see Methods). As summarized in Supplemen-
tary Table S6, when dichotomized, miR-34a expression was 
the only 1 of the 8 miRs that showed signifi cant prognos-
tic correlation (Bonferroni-adjusted, P = 0.0047) in the TCGA 
data set. Specifi cally, patients with miR-34a low-expressing
glioblastomas exhibited an overall improved survival (Fig. 3A). 
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Moreover, miR-34a low expression did not simply identify the 
proneural subtype, which is known to have better outcome 
(2, 3). Instead, within the proneural subtype, low miR-34a
expression stratifi es a subgroup of patients with proneural gliob-
lastoma with improved overall survival (HR, 2.2; P = 2.2E-05), 
compared with miR-34a high-expressing proneural patients or 
other non-proneural patients (Supplementary Table S6); moreo-
ver, the prognostic signifi cance of miR-34a was independent 
from other clinical variables such as therapy and gender or 
batches in multivariate analyses (Supplementary Table S7).

Importantly, this prognostic correlation of miR-34a was 
recapitulated in an independent cohort of human glioblas-
toma. Briefl y, we conducted quantitative in situ hybridiza-
tion using miR-34a as probe on a tissue microarray from an 
independent cohort of human gliomas (Fig. 3B and C; Sup-
plementary Fig. S4 and Supplementary Tables S8 and S9) and 
showed that low miR-34a expressors were indeed associated 
with better overall survival (P = 0.0154; Fig. 3D).

miR-34a Is a Tumor Suppressor in 
Proneural Glioblastoma

Its potent tumor-suppressive activity in vivo, evidence 
of genomic alteration, and its putative direct mRNA tar-
get PDGFRA, coupled with its prognostic signifi cance, 
together strongly nominated miR-34a for mechanistic stud-
ies. Although it has been shown to be a tumor suppressor 
in multiple human cancer types including glioblastoma 
(30, 31), a specifi c role in proneural glioblastoma has not been 
fully shown. Similar to the pattern of lower expression in 
human proneural-subtype glioblastoma (P = 1.92e-19; Sup-
plementary Fig. S5A), miR-34a expression was lower in p53/
Pten double-null tumor spheroids or NSCs than in normal 
NSCs (P = 0.0034 and P = 0.0036, respectively; Supplemen-
tary Fig. S5B); moreover, the acute deletion of p53 and Pten 
by ex vivo CRE expression in early-passage primary astrocytes 
results in signifi cant downregulation of endogenous miR-34a 
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(P = 0.002; Supplementary Fig. S5C and S5D). Functionally, 
in TSG2, a tumor spheroid culture derived from a murine 
p53/Pten−/− glioblastoma, miR-34a expression signifi cantly 
inhibited in vivo tumorigenesis in both orthotopic xenografts 
(P = 0.0026) and in subcutaneous transplants (P < 0.0001; 
Fig. 4A–E), resulting in prolonged survival of tumor-bear-
ing mice and a less aggressive growth pattern (Supplemen-
tary Fig. S6A). While potently inhibiting tumorigenesis in 
vivo, it was interesting that miR-34a overexpression did 
not impact signifi cantly on cell proliferation in 2-dimen-
sional culture experiments (Fig. 4F and G). Although it 
is possible that the lack of growth phenotype may refl ect 

the possibility that cells under the selective pressure of 
miR-34a overexpression may undergo negative selection 
in vitro, as observed in vivo in tumors arising from cells 
stably transduced with a miR-34a lentivector (Supplemen-
tary Fig. S6B), the phenotype of signifi cant impairment 
of spherogenic potency in both human and mouse tumor 
neurospheres implicates renewal potential as a phenotype 
impacted by miR-34a expression. In particular, spherogenic 
renewal of murine TSG2 cultured in NSC medium in the 
presence of fi broblast growth factor (FGF) and epidermal 
growth factor (EGF) was inhibited by miR-34a expres-
sion (Fig. 4H). Similarly, this phenotype was recapitulated 
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in TS543, a human proneural-like  glioblastoma spheroid 
showing concomitant amplifi cation and overexpression of 
PDGFRΑ, upon miR-34a overexpression (Supplementary 
Fig. S7A and S7B).

Conversely, to show a gain-of-oncogenic function in the 
context of miR-34a loss, we used a decoy 3′UTR system to 
functionally knockdown miR-34a as previously described 
(32). Indeed, stable decoy expression resulted in enhanced 
tumorigenicity in vivo in human E6/E7T astrocytes and 
in mouse Ink4a/Arf−/−;Pten−/− and Ink4a/Arf−/−Pten−/−;EgfrVIII/+ 

astrocytes resulting in decreased tumor-free survival 
(Fig. 5A–E; Supplementary Fig. S8A and S8B). Taken 
together, these in vitro and in vivo functional data in mouse 
and human systems, both by exogenous genetic pertur-
bation and by endogenous downregulation of miR-34a, 
unequivocally prove that miR-34a is a glioblastoma tumor 
suppressor in the proneural subtype.

miR-34a Directly Regulates PDGFRA
To understand its mechanism of action in proneural 

glioblastoma, we explored the molecular basis of miR-34a 
action within the context of the established CLR network. 
First, we focused on PDGFRA as the predicted direct target of 
miR-34a as they represent the 2 nodes of a CLR-defi ned edge 
and both are subjected to genomic alterations, in addition 
to PDGFRA being a known signature oncogene in prone-
ural subtype of glioblastoma (2). Specifi cally, we looked 
to confi rm direct binding of PDGFRA by miR-34a using a 
3′UTR luciferase reporter assay. Indeed, the direct nature of 
endogenous miR-34a–PDGFRA interaction was validated by 
this assay in E6/E7T human astrocytes (Supplementary Fig. 
S9A). Supporting the biologic relevance of this interaction, 
PDGFRΑ expression was downregulated by enforced expres-
sion of miR-34a in 2 independent mouse (TSG1 and TSG2) 
and human (TS543) proneural tumor spheroid cultures 
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(Fig. 6A) as well as in established human and mouse gliob-
lastoma cells (Supplementary Fig. S9B). Conversely, decoy-
based miR-34a knockdown in primary mouse astrocytes 
induced expression of PDGFRA (Fig. 6A), and reintroduc-
tion of the Pdgfra open reading frame was able to reverse the 
inhibition of tumorigenesis by miR-34a in the TSG2 system 
(Fig. 6B) as well as the spherogenic potential of mouse and
human proneural malignant spheroids (Supplementary 
Fig. S10A–S10C, respectively). Together, these experimental 
data confi rm that PDGFRA is a direct target of miR-34a that 
is functionally linked to proneural glioblastoma biology, 
consistent with a recent report (33).

miR-34a Regulates TGF-� Signaling via a Smad4 
Transcriptional Network

In line with the observation in the global CLR network, 
less than 1% of the miR-34a subnetwork (3 of the 342 

nodes or 0.88%) was computationally predicted to be direct, 
 suggesting that indirect mechanisms such as transcriptional 
regulation mediated through intermediate regulators, for 
example, transcription factors, may be at play (34). To iden-
tify such intermediates in the network, we conducted an in 
silico enrichment analysis for transcription factor–binding 
sites in promoter regions of mRNA nodes that are con-
nected to miR-34a and defi ned as part of the proneural or 
mesenchymal signature (ref. 2; see Methods). Because miR-
34a is strongly underexpressed in proneural samples, tran-
scription factors that were (i) overrepresented in the binding 
sites of these proneural signature genes linked to miR-34a, 
(ii) overexpressed in proneural samples and exhibited (iii) a 
statistically signifi cant negative correlation with miR-34a in 
the proneural subtype were defi ned as potential interme-
diaries through which miR-34a may act. This in silico analysis 
identifi ed 3 transcription factors, PBX1, SMAD4, and MYC, 
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whose binding sites were signifi cantly enriched (P < 0.05; 
Supplementary Table S10). While PBX1 was not expressed 
in either our human or mouse glioblastoma systems (data 
not shown), MYC has been shown to be a target regulated 
by miR-34a (ref. 35; data not shown) and is known to 
play a pivotal role in gliomagenesis in the p53/Pten GEM 
model of glioblastoma (28), thus providing support that 
the computational approach taken to identify transcription 
factor intermediates is biologically sound. With that, we 
next explored the putative relationship between miR-34a 
and SMAD4, a connection that has not been reported in any 
tumor type including glioblastoma.

Smad4 is a co-Smad required for R-Smad–mediated acti-
vation of TGF-β (transforming growth factor-β) signaling. A 
large body of literature has implicated critical roles for TGF-β 
signaling in cancers (36). In glioblastoma, the TGF-β pathway 
has been shown to act as an oncogenic factor (37), and TGF-β 
signaling can enhance self-renewal capacity of tumor-derived 
spheroids in vitro, an effect that is dependent on ID1 and ID3 
(38). This gains signifi cance in view of the observed effect 
of miR-34a on the spherogenic potency in vitro. Against this 
backdrop, the bioinformatic prediction of SMAD4 as a putative 
transcription factor intermediate in the CLR network suggests 
that miR-34a may be a regulator of the TGF-β–SMAD–ID 
signaling pathway. Consistent with this is the observation of a 
strong negative correlation between expression of miR-34a and 
SMAD4 in the TCGA data set (Supplementary Fig. S11). To 
functionally test this hypothesis, we examined the expression 
of SMAD4 and the ID family proteins in independent mouse 
(TSG1 and TSG2) and human (TS543) proneural-like gliob-
lastoma tumor spheroid cultures in response to miR-34a. As 
shown in Fig. 6A, miR-34a downregulated SMAD4 and ID1/3 
expression, and such regulation was through direct binding to 
a conserved consensus region in the 3′UTR of SMAD4 based on 
the 3′UTR luciferase reporter assay (Supplementary Fig. S12). 
Conversely, in primary astrocytes, decoy sponging of endog-
enous miR-34a increased SMAD4 and ID1/3 expression (Fig. 
6A). Next, to show a functional role of SMAD4 in the proneural 
system, we cotransduced p53/Pten−/− tumor spheroids cells with 
miR-34a and a Smad4 expression vector to show that SMAD4 
expression was suffi cient to reverse the effect of miR-34a on 
ID1 and ID3 expression (Fig. 6C) and rescues its antitumori-
genic activity both in vitro and in vivo (Fig. 6C; Supplementary 
Fig. S13). Overall our functional rescue studies suggest that 
in proneural glioblastoma, both PDGFRA and SMAD4 are 
key effectors downstream of miR-34a (Fig. 6D). Furthermore, 
as the activity of TGF-β on renewal of glioblastoma spheroid 
cultures has been reported to depend on ID1/ID3 expression 
(38), we showed that lentiviral-based hairpin knockdown of 
Smad4, Id1, or Id3 in the mouse proneural-like system sig-
nifi cantly reduced the number of spheroids when compared 
with the nontargeting control (Fig. 7A–D). Finally, we found 
that the stable knockdown of Smad4 impairs tumorigenesis 
in vivo in intracranial transplants (P < 0.01; Fig. 7E), suggest-
ing that the SMAD4–ID1–ID3 axis is crucial in regulating the 
homeostasis of malignant glioma cells in mouse proneural-like 
glioblastoma. In summary, mechanistic exploration guided by 
integrative analyses of transcription factor–binding site enrich-
ment in context of this CLR-inferred network established a 
novel mechanism of action by miR-34a whereby it exerts its 

diverse transcriptomic infl uences through the modulation of 
the TGF-β transcriptomic network through the direct binding 
of the SMAD4 3′UTR.

DISCUSSION

Glioblastoma is a heterogeneous disease characterized by 
distinct molecular subtypes underlying different biologic 
behaviors and response to therapies. Leveraging the multidi-
mensional TCGA data set, reverse-engineering with the CLR 
algorithm has provided an inferred map of the putative miR–
mRNA regulatory network in glioblastoma. Integrating this 
network model with molecular subtype defi nition and func-
tional genomic screen, as well as in silico sequence-based target 
prediction and promoter analysis, we prioritized miR-34a for 
downstream mechanistic studies. These studies uncovered a 
novel regulatory network emanating from miR-34a, which 
acts as a tumor suppressor in proneural-like glioblastoma, 
in part, through direct action on PDGFRΑ as recently shown 
by Silber and colleagues (33) in addition to commandeering 
of the SMAD4 transcriptomic network to regulate ID1 and 
ID3 levels. That the majority of mRNAs computed to link 
to a miR node appears to be regulated indirectly through 
transcription factors, such as SMAD4 (this study) and MYC 
(35, 39) likely serves as an amplifi er of an effect of miR on the 
global transcriptome. This fi nding thus provides a rationale 
for an alternative approach to inhibit transcription factor 
activity through modulating its upstream miR regulatory 
node. In sum, this work illustrates not only the power of com-
prehensive cancer genomic data sets such as that of TCGA and 
the importance of mining and interpreting such data sets in 
the context of cancer biology but also the value of computa-
tional and experimental models in enabling an understanding 
of the underlying complexity of the disease.

Although miR-34a has been implicated in multiple cancer 
types (40), its roles in the regulation of SMAD4–ID1–ID3 
have not been previously suggested. While the relationship 
between PDGFRA and miR-34a is predicted by sequence-based 
algorithms, the relationship between miR-34a and SMAD4 or 
its downstream ID1 and ID3 are not; therefore, the hypothesis 
that they could be mediators of miR-34a activity came only 
through unbiased analysis for transcription factor–binding site 
enrichment in the promoters of CLR-inferred mRNA nodes 
linked to miR-34a. This reinforces the power of global system-
biology approaches in generating unanticipated hypotheses.

Equally important are appropriate experimental models 
that enable genetic (or pharmacologic) perturbations to 
examine the validity of network connections inferred by the 
computational models. The importance of the GEM model 
of proneural-like glioblastoma is of particular relevance, as 
most of the well-established human glioblastoma cell mod-
els or human tumor spheroid cultures do not represent the 
proneural subtype; indeed, using this system, we show that 
miR-34a exerts its tumor-suppressive function by impinging 
on self-renewal through the TGF-β/SMAD pathway (38). The 
ability to show the relationship of miR-34a with PDGFRΑ 
and SMAD4–ID nuclear oncoproteins in spontaneous de novo 
glioblastoma in p53/Pten−/− GEM model, and the effects of the 
experimental perturbation of these oncogenic axes on cancer 
cell homeostasis in this system provide strong evidence that 
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the predicted regulatory relationships are relevant and opera-
tive in vivo in an intact microenvironment.

Finally, our fi ndings in this study have potential clinical 
application, as miR-34a expression level is shown in 2 inde-
pendent cohorts of glioblastoma to stratify patients into 
good and poor prognosis subgroups with signifi cant dif-
ference in overall survival. Furthermore, within the TCGA 
cohort, we found that miR-34a carries signifi cant overlap in 
prognostic signifi cance with glioma-CpG island methylator 
phenotype (G-CIMP) status (ref. 5; data not shown), suggest-
ing a possible mechanistic relationship between miR-34a and 
G-CIMP, although elucidation of the molecular basis for this 
relationship will require further studies.

Previous studies have reported miR-34a expression level 
as a prognostic parameter. For instance, in pancreatic ductal 
adenocarcinoma, miR-34a loss (i.e., low to no expression) is 
associated with a decreased survival probability (41); in other 
words, miR-34a–expressing pancreatic ductal adenocarcinoma 

has a relatively better survival. In breast cancer, although high 
miR-34a expression is correlated with poor prognosis factors 
including positive nodal status, high tumor grade, estrogen 
receptor negativity, HER2 positivity, and high proliferation 
rate, after adjusting for these known prognostic parameters in 
multivariant analysis, high miR-34a expression is in fact associ-
ated with a lower risk of recurrence or death from breast cancer 
(42), indicating that high levels of miR-34a are a good prognos-
tic factor. In contrast to these previous studies, our analyses of 
2 independent cohorts of glioblastoma showed that miR-34a 
low-expressing glioblastomas have better outcome with longer 
overall survival. In other words, glioblastoma tumors driven by 
inactivation of miR-34a are less aggressive than glioblastomas 
that evolve through deregulation of other genetic elements. 
The differences in prognostic signifi cance of miR-34a loss in 
different tumor types likely refl ect the modulatory effects of 
preexisting genetic alterations and the specifi c susceptibility 
of different cell types to the aberrant activation of any given 
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Figure 7. The functional inactivation of SMAD4 and ID proteins impairs tumorigenesis and self-renewal in proneural glioblastoma. A, Western blot 
analysis of SMAD4, ID1, and ID3 proteins 72 hours after infecting p53/Pten−/− glioma cells (TSG2) with short hairpin RNA (shRNA) constructs specifi c 
for murine Smad4. B, stable knockdown of Smad4 by lentiviral shRNA impairs the self-renewal capacity of mouse proneural spheroids (TSG2) in vitro. 
Error bars represent SD of experimental triplicates. C, stable knockdown of Id1 by lentiviral shRNA impairs the self-renewal capacity of mouse proneural 
spheroids (TSG2) in vitro. Protein levels were measured 72 hours after the infection (top). Error bars represent SD of experimental triplicates. D, stable 
knockdown of Id3 by lentiviral shRNA impairs the self-renewal capacity of mouse proneural-like spheroids (TSG2) in vitro. Protein levels were measured 
72 hours after the infection (top). Error bars represent SD of experimental triplicates. E, Kaplan–Meier survival analysis of Ncr/nude mice transplanted 
orthotopically with p53/Pten−/− murine glioblastoma cells harboring hairpins specifi c for murine Smad4 (sh1 and sh2) or the vector control (ntg ct).
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pathway. This is not dissimilar to the case of another glioma 
gene, IDH1, whose specifi c point mutation affecting a key 
residue in the protein (R132) has been shown to be oncogenic. 
Interestingly, gliomas carrying this mutation in IDH1 as well as 
analogous mutations affecting IDH2 have a signifi cantly better 
prognosis (43–46). On the other hand, in cytogenetically nor-
mal acute myelogenous leukemia carrying NPM1 mutations, 
IDH1 mutations at the same residue are a poor prognostic 
factor as patients with IDH1 mutations do worse (47, 48). In 
summary, we illustrate here that computational network mod-
eling of the complex interrelationships among diverse genetic 
elements can generate a logical framework in which to explore 
and understand the genetics and biology of cancers, and when 
integrated with disease knowledge and clinical annotation can 
lead to discovery of new pathogenetic insights in addition to 
potential prognostic biomarkers or therapeutic targets. In this 
regard, we believe that the results from this study should moti-
vate future efforts to explore the therapeutic implication of 
miR-34a reconstitution. The potent tumor-suppressive activity 
in our preclinical models would suggest possible therapeutic 
benefi t of miR-34a reconstitution by tumor-targeted delivery 
in low miR-34a–expressing glioblastoma. In view of its mecha-
nism of action through PDGFRA, MYC, and SMAD4, one 
may further speculate that reconstitution of miR-34a could 
represent an attractive strategy to deliver combination therapy 
against multiple bona fi de cancer gene targets.

METHODS 

Bioinformatic Analysis
Network inference was conducted, both globally and within each 

of the 4 molecular subtype sample sets, using the CLR algorithm on 
290 matched miR and mRNA expression profi les from the TCGA. 
Copy number analysis was conducted on level 3 segmented data by 
the CN Tools Bioconductor package using 90th percentile segment 
gain or loss (SGOL) values as thresholds. Gene weight analysis was 
done to test for correlation of expression and copy number change 
for each miR and mRNA species. Transcription factor motifs were 
identifi ed on the basis of coincidental prediction of binding sites 
by the CisGenome and MotifScanner programs in promoter regions 
(−8 kb, +2 kb of transcription start site).

Mouse and Human Proneural Glioblastoma Cell Lines
p53L/L;PtenL/+;Gfap-Cre and p53L/L;PtenL/L; Gfap-Cre mice have been 

previously described (28). Primary murine astrocytes were  isolated 
from Gfap-Cre;Ink4a/Arf L/L;PtenL/L and Gfap-Cre;Ink4a/Arf L/L;PtenL/L; 
Eg frLSLVIII/+. GEM models were provided by Ronald A. DePinho. 
Murine cell lines were created by enzymatic and mechanical dis-
sociation of individual samples, all genotypes were verifi ed by PCR 
amplifi cation of genomic DNA and gel electrophoresis. The Harvard 
Institutional Animal Care and Use Committee approved all animal 
studies and procedures. TS543 human malignant spheroids are 
short-term cultures derived from a primary proneural glioblastoma 
kindly provided by C. Brennan. PDGFRA expression was validated by 
Western blot analysis.

An extensive description of the materials and methods is provided 
in the Supplementary Information.
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