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Statistical learning applied to transcript responses help to gauge how
genes influence one another and to identify complex networks

Timothy S. Gardner, Skip Shimer, and James J. Collins

C
ellular processes are governed by ex-
tensive, interconnected networks of
genes, proteins, and metabolites. An
important challenge in systems biol-
ogy is to determine the structures

and mechanisms by which these complex net-
works control cell processes.

Recent studies of cellular networks include
methods for identifying gene and protein inter-
actions, regulatory modules, and global struc-
tural properties. These methods are yielding
valuable information and insights, but they of-
ten fail to identify the regulatory role of individ-
ual elements or the system-wide functional
properties of a given network. Computational
modeling and simulation also help toward un-
derstand network functions, but their utility de-
pends on amassing extensive information, in-
cluding regulatory structures, network
connections, rate constants, and biochemical
concentrations. Such data are gen-
erally not available, particularly
for larger regulatory networks,
due to the high cost and slow speed
of experimentation.

In recent work, we developed an
efficient method for inferring the
basic structure and function of mi-
crobial genetic networks using
limited experimental information.
The method, called network iden-
tification by multiple regression
(NIR), quantitates the influence of
genes on one another using mea-
surements of a microbe’s tran-
scriptional response to genetic perturbations.
NIR assembles this information into a network
model that can be used to interpret additional
experimental data, make predictions about net-

work behavior, and identify useful control
points in the regulatory network.

NIR-inferred network models will be of great
value in a variety of applications, including
bioremediation, bioproduction of chemicals,
and development of new antibiotics. For in-
stance, efforts to develop antibiotics based on
natural products or on more recent genomic-
based methods that focus on lethal or “essen-
tial” genes as drug targets have delivered few
new antibiotics to the clinic. Using network
maps of bacterial pathways could help to over-
come the shortcomings of these and other tradi-
tional methods—in part, by identifying genetic
pathways and key regulators that serve as tar-
gets for new antimicrobial agents that circum-
vent mechanisms of resistance.

Inferring Genetic Networks

with the NIR Method

The NIR method departs from
structural approaches such as two-
hybrid and DNA-binding assays.
Structural approaches define net-
works through measurements of
probable physical interactions, but
they typically do not provide infor-
mation on functional relationships
between genes. On the other hand,
the NIR method, which is a form
of system identification, identifies
quantitative regulatory relation-
ships between genes under ob-
served cellular conditions. Thus,

with the NIR method, we can analyze and pre-
dict dynamic responses of gene networks,
thereby gathering information that comple-
ments the findings of structural approaches.
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To apply the system identification approach
to gene networks, controlled perturbations,
such as a set of gene overexpressions, are deliv-
ered to a cell, global measurements of that cell’s
response are obtained, such as through tran-
script profiling, and an algorithm is applied to
the data that identifies or learns a model of the
genetic network (Fig. 1A). This model helps to
define the relationship between input variables
such as RNA concentrations and output vari-
ables such as gene transcription rates (Fig. 1B).

The challenge in applying a system identifica-
tion method is to select a model, a learning
algorithm, and an experimental design that ac-
curately and efficiently define the network of
interest. In the NIR method, we chose to repre-
sent gene interactions with a linear model. That
is, the rate of transcription of each gene is rep-
resented as a weighted sum of the RNA concen-
trations of other genes in the network. Thus, the
influence of each gene on each other gene, if any,
is explained by the calculated weights. The

learning algorithm, which uses experimental
training data to determine each weight in the
model, is based on multiple regression analysis.
Finally, training data are collected by overex-
pressing individual genes and then measuring
the steady-state RNA levels of all genes in the
network.

The concept of system identification is analo-
gous to the discovery process that a typical
scientist intuitively applies (Fig. 1C). Available
data are used to generate a preliminary model of
the system (a formal computational model in the
system identification framework), a hypothesis
is generated based on that model (estimation of
system outputs based on inputs), an experiment
is conducted to test the hypothesis (collection of
training data), and the model is updated based
on the results of the experiment (fitting/learn-
ing).

For a scientist, a model is typically intuitive,
or developed with the aid of various text-based,
logical, graphical, or mathematical tools. In sys-

F I G U R E 1

Overview of the NIR method. (A) A structured set of perturbations is delivered to cells, such as the overexpression or downregulation of
one or more genes in each experiment. RNA expression (or, if possible, protein and metabolite activity) is measured for all species in the
network. The data set is used by the NIR algorithm to infer a model of the perturbed network. The resulting model may then be used for
analysis and prediction of network function. (B) In system identification, the inferred model relates a set of input variables to output
responses using a mathematical function. In the NIR method, the input variables (X1, X2, X3), are RNA concentrations of each gene, the
output responses are transcription rates of each gene (dx1/dt), and the function f is a weighted sum of the input variables. (C) System
identification is analogous to the scientific method.
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tem identification, the model construction, hy-
pothesis generation, experimentation, and
learning steps are assembled into a formal math-
ematical or computational framework. The
rigor of that framework enables subsequent pro-
cessing, interpretation, and analysis of complex,
multivariate data, such as those generated by
microbial genetic networks, that are ordinarily
beyond the reach of human intuition.

Testing NIR by Studying the

SOS Pathway

We tested the NIR method on the SOS pathway
in Escherichia coli. This extensively studied
pathway, which regulates an E. coli cell’s re-
sponse to DNA damage and involves more than
100 genes, serves as a good network for validat-
ing the NIR method. As a starting point, we
applied NIR to a nine-gene subnetwork at the
core of the pathway, experimentally altering an
inducible plasmid to overexpress each of those

genes and measuring RNA responses using real-
time PCR.

With the NIR method, we correctly identified
25 already recognized regulatory relationships
among those nine genes as well as 14 additional
relationships that either are novel regulatory
pathways or false-positive findings (Fig. 2A and
2B). Moreover, the NIR-determined network
model correctly identified recA and lexA, the
known principal regulators of the SOS response,
as having the strongest influence, or largest reg-
ulatory weights, on other genes within this net-
work (Fig. 2C). Thus, the model can be used to
suggest which genes should be perturbed to elicit
a particular response from the network—a ca-
pability of great value in optimizing bacteria for
environmental remediation or bioproduction of
compounds.

We also used the NIR-determined network
model together with additional experimental
data to identify genes that mediate the network
response to a drug or other stimulus. For exam-

F I G U R E 2

Inference of E. coli subnetwork using the NIR method. (A) The connections identified by the NIR method in a nine-gene subnetwork of the
E. coli DNA damage response pathway. For visual clarity, strengths and directions of the identified connections are not labeled. Blue lines
indicate connections for which there exists evidence in the scientific literature and online databases. Novel connections (or false-positives)
are indicated in red. (B) The weight matrix representation of the network identified by the NIR method. The weights determine the influence
of the gene in each column on the rate of transcription of the gene in each row. (C) The model is used to calculate the mean influence of
each gene on transcription changes in the other genes. The model identifies recA and lexA as the primary regulatory nodes in the network,
which is consistent with existing knowledge.
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ple, we treated E. coli cells with mitomycin C
(MMC), an antibiotic that leads to the forma-
tion of single-stranded DNA, thereby activating
the RecA protein. Activated RecA subsequently
significantly upregulates all genes in the test SOS
network (Fig. 3A). When we applied this in-
ferred network model to analyze experimental
MMC response data, we found that it correctly
identified recA as the key mediator of MMC
bioactivity (Fig. 3B). The model also identified
the DNA-translesion repair polymerase,
umuDC, as a second mediator, albeit at a lower
significance level.

We also applied the model to publicly acces-
sible data that were obtained by using microar-
rays to assay responses of E. coli to various
stimuli. Here again, the network model cor-
rectly identifies recA as the key mediator of the
SOS response to DNA damage caused by UV
irradiation and also treatments with the quino-
lone antibiotic pefloxacin. But recA is not iden-
tified as a mediator of E. coli response to novo-
biocin treatment, which does not damage DNA

(Fig. 3D). In addition, umuDC is identified as a
mediator of the cellular response to DNA dam-
age resulting from UV irradiation, but not to the
DNA damage resulting from pefloxacin treat-
ment. The absence of umuDC as a mediator of
quinolone-induced DNA damage suggests that
the genes involved in DNA repair following
quinolone damage are different from those as-
sociated with damage resulting from MMC and
UV irradiation.

Simplifying Complexity

One of our goals in using NIR, as with using
most system biology methods, is to understand
properties of cellular and biochemical systems
that are not apparent from studying individual
components. Some researchers presume that to
understand such global properties, it is neces-
sary to build extensive computational models
that integrate most of the biochemical details of
a cell or gene network. However, building such a
model is unrealistic both computationally and ex-
perimentally because cells are too complex.

F I G U R E 3

Prediction of perturbed genes using the network model identified by the NIR method. Cells were perturbed with mitomycin C (MMC) and
the resulting expression changes (A) were measured. The recA gene is known to mediate the SOS response following DNA damage by
MMC. (B) The gene perturbations predicted by the network model to cause the observed expression changes (i.e., the mediators of the
response). Only the recA and umuDC genes were predicted by the model as being mediators, and only recA with high confidence. The other
predicted perturbations were not statistically significant. Lines denote significance levels: P � 0.3 (dashed), P � 0.1 (solid). (B–D) The
network model was also applied to predict the mediators of expression responses following UV irradiation and antibiotic treatment. The
expression data were obtained from public microarray data sets, but are not shown in the figures. In the case of UV irradiation and pefloxacin
treatment, both DNA-damaging, recA is correctly predicted as the mediator of the expression response. For novobiocin, which does not
damage DNA, recA is not predicted as the mediator of the expression response.
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Moreover, for most practical purposes building
such a comprehensive model is unnecessary.

Traditionally, the complexity of cellular bio-
chemistry is addressed by reducing a particular
system to its components, which are then stud-
ied in isolation. But in following such an ap-
proach, valuable information about system
properties is lost, precisely the opposite of what
is desired in a systems analysis. Somehow, an
alternative approach is needed in which the bio-
chemistry is simplified in a way that preserves
the information needed to describe system-wide
properties of the network.

In system identification, that simplification is
achieved by restricting the complexity of the
model chosen to represent the system. For exam-
ple, with NIR, we use a linear approximation of
network interactions because it limits the num-
ber of required experiments, but still captures
network properties of value in medical and bio-
technological applications, namely by identify-
ing major network regulators and mediators of
chemical or environmental stresses.

However, this model may not be appropriate
for analyzing other behaviors of microorgan-
isms, such as the genetic interactions that or-
chestrate bacteriophage infection. Other models
of varying complexity, including Boolean,
Bayesian, and neural network models, may be
better suited for analyzing such systems. In fact,
one of the major challenges is to select an appro-
priate model structure that enables analysis of
selected global properties while preserving
computational tractability, speed, and experi-
mental feasibility. We and other groups are ac-
tively exploring criteria for choosing alternative,
workable models.

Building Better Drugs and Better Bugs

The NIR method has immediate applicability
for improving antibiotics. For example, biofilms
are involved in as many as 60% of human infec-
tions and are notoriously difficult to eradicate
because cells in biofilms survive antibiotic doses
several orders of magnitude higher than those
sufficient to kill free-floating bacteria.

Although mutations can lead to resistance
against anti-infective drugs, genetic changes are
not necessarily responsible for the increased an-
tibiotic tolerance that occurs in biofilms. For
instance, cells removed from biofilms often prove
to be as susceptible to antibiotics as are their free-

floating counterparts. Moreover, reduced diffu-
sion of drugs into biofilms does not generally ac-
count for their ability to withstand such drugs.

For instance, fluoroquinolone antibiotics such
as ofloxacin and ciprofloxacin readily penetrate
biofilms and kill many cells. Yet, small numbers
of cells within biofilms apparently survive re-
gardless of the concentration of antibiotics ap-
plied, according to Kim Lewis and colleagues at
Northeastern University in Boston, Mass. These
“persistor” cells are believed to repopulate bio-
films after antibiotic treatments cease, and thus
to cause recurrent infections. In addition, such
persistence may permit advantageous mutations
to be amplified.

The mechanisms of persistence are not well
understood. But persistence is likely a dynamic
response of the cell orchestrated by multiple
stress response pathways. A better understand-
ing of these stress response networks, obtained
using the NIR method, will be of great value in
identifying productive targets for novel antibio-
film compounds. The NIR-determined network
model can also be used to identify genes that
mediate the effects of a particular compound.
Thus the network model could be of great value
for optimizing candidate antibiotic compounds,
and could enable the development of novel
classes of drugs that target the complex regula-
tory properties of genetic networks.

Identifying and analyzing networks with NIR
may also be valuable when optimizing microbes
used in bioremediation and bioconversion
schemes. Bacteria are extraordinarily flexible
respirers, possessing multiple and overlapping
pathways for obtaining energy by transferring
electrons from high-potential compounds, or
electron donors, to lower-potential entities that
serve as electron acceptors, such as oxygen and
metal ions. For example, Shewanella oneidensis
can reduce solubilized heavy metals, such as
uranium(VI), to an insoluble form to decontam-
inate ground water at waste sites, according to
Derek Lovley and colleagues at the University of
Massachusetts, Amherst.

While S. oneidensis is a remarkably capable
organism, the conditions under which it is stud-
ied in laboratory cultures differ greatly from
those at contaminated sites where it might be
used. Indeed, when oxygen is present, S. onei-
densis will not reduce uranium(VI).

NIR can be used to develop a model of the
genetic networks regulating electron transport
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pathways in S. oneidensis or other microorgan-
isms. In combination with models of bacterial
metabolism, such a model could help to manip-
ulate and optimize its performance under field
conditions. Similarly, metabolic pathways in
other microbes could be manipulated with the
help of NIR to enhance their production of
valuable compounds, including pharmaceuti-
cals and fuels.

Future Directions

One practical advantage in using NIR is its
scalability. Computationally, the NIR algorithm
is easily applied to large networks. Experimen-
tally, the scalability of the method depends pri-
marily on the speed with which perturbations
can be delivered. So far, we have used only
transcriptional overexpressions delivered from
episomal expression plasmids, though alterna-
tives such as knockdown approaches based on
antisense RNA could also be used. Such pertur-
bations easily could be applied to any gene and
require no labor-intensive, biologically unpre-

dictable chromosomal modifications. For exam-
ple, we are extending our pilot study, using the
NIR method to infer the complete E. coli DNA-
damage response network, including more than
100 genes. We expect this effort to lead to novel
or enhanced antibiotics.

Although we have applied NIR only to RNA
expression data thus far, the method could just
as easily be applied to measurements of proteins
and metabolites. However, large-scale measure-
ments of protein concentrations, protein activity
states, and metabolite concentrations are still
difficult to obtain. When analytic technologies
including mass spectrometry, high-resolution
electrophoresis, and protein arrays are further
developed, it should become possible to use the
NIR algorithm to explore the dynamic and
quantitative properties of protein signaling cas-
cades and metabolic networks. This capability
will be of tremendous value in understanding
the mechanisms by which such networks medi-
ate, distinguish, and integrate environmental
signals in different organisms.
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