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The ever-increasing incidence of antibiotic-resistant infections 
combined with a weak pipeline of new antibiotics has created 
a global public health crisis1. Accordingly, novel strategies for 
enhancing our antibiotic arsenal are needed. As antibiotics 
kill bacteria in part by inducing reactive oxygen species 
(ROS)2–4, we reasoned that targeting microbial ROS production 
might potentiate antibiotic activity. Here we show that ROS 
production can be predictably enhanced in Escherichia coli, 
increasing the bacteria’s susceptibility to oxidative attack.  
We developed an ensemble approach of genome-scale, 
metabolic models capable of predicting ROS production in  
E. coli. The metabolic network was systematically perturbed 
and its flux distribution analyzed to identify targets predicted 
to increase ROS production. Targets that were predicted  
in silico were experimentally validated and further shown to 
confer increased susceptibility to oxidants. Validated targets 
also increased susceptibility to killing by antibiotics. This work 
establishes a systems-based method to tune ROS production 
in bacteria and demonstrates that increased microbial ROS 
production can potentiate killing by oxidants and antibiotics.

Reactive oxygen species (ROS) can damage DNA, RNA, proteins 
and lipids, resulting in cell death when the level of ROS exceeds an 
organism’s detoxification and repair capabilities. Despite this danger, 
bacteria growing aerobically generate ROS as a metabolic by-product, 
a risk balanced by an increased efficiency and yield of energy from 
growth substrates. At least two possible mechanisms can be used 
to manipulate bacterial ROS metabolism and increase sensitivity of 
bacteria to oxidative attack: (i) amplification of endogenous ROS 
production and (ii) impairment of detoxification and repair systems. 
Whereas removal of their detoxification and repair systems has been 
shown to make bacteria more susceptible to oxidants5,6, antibiotics7 
and immune attack8,9, manipulation of endogenous bacterial ROS 
production remains largely unexplored. Endogenous ROS produc-
tion has long been appreciated as a factor influencing the ability of 
an organism to survive oxidative stress10, but an inability to predict 
the outcome of genetic and environmental perturbations on ROS 
production11 has hampered exploration of this phenomenon as an 

 antimicrobial adjuvant. What has been missing is a thorough systems-
level understanding of the pathways that produce ROS, which con-
stitute a potentially expansive and highly integrated biochemical 
reaction network. In this study, we sought to tune E. coli metabolism 
for increased ROS production (specifically, O2− and H2O2) and to 
determine whether this effect can potentiate oxidative stress and 
antibiotic activity. Our goal was not to overwhelm the oxidative 
detoxification and repair capabilities of E. coli with endogenously 
generated ROS, but rather to increase endogenous production such 
that the ability of E. coli to cope with exogenous oxidative stress 
would be compromised. We hypothesized that such a strategy would 
broadly potentiate antimicrobials that harness oxidative stress and 
provide a general approach for the discovery of antimicrobial adju-
vants. To reach this goal, we developed an approach using ensembles 
of genome-scale, metabolic models to quantitatively estimate ROS 
 production from E. coli metabolism (Fig. 1).

The sources for the majority of endogenous ROS produced by E. coli 
remain elusive11. The removal of enzymes that generate ROS in vitro 
has had seemingly little effect on whole-cell ROS production11. This 
can be explained by the potential scope of ROS generators. Previous 
studies have demonstrated that O2− and H2O2 can be produced when 
O2 abstracts electrons from reduced flavin, quinol and transition metal 
functional groups12,13. We inspected E. coli metabolism for enzymes 
that use these electron carriers and identified 133 reactions, spanning 
many metabolic pathways, with the potential to generate ROS in the 
presence of O2 (Supplementary Table 1). The number of potential 
ROS-generating reactions is comparable to the number of reactions 
that generate ATP/ADP, NAD/H and NADP/H, suggesting that ROS 
could play a crucial, highly integrated role in bacterial metabolism.  
A quantitative systems-level approach is required to predictably 
modify the production of such highly connected metabolites, as even 
removal of enzymes that endogenously produce ROS may increase 
or decrease production depending on the redistribution of metabolic 
flux on the remaining ROS-generating enzymes11.

Systems-level metabolic modeling has been used extensively to 
optimize the production of desirable metabolites and has led to 
advances in biotechnology, metabolic discovery and microbiology14. 
In this study, we employed flux balance analysis with genome-scale 
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metabolic models (GSMM) to simulate systems-level ROS production 
in E. coli. In flux balance analysis, reaction stoichiometries are used to 
place constraints on a metabolic solution space, and linear program-
ming identifies a flux distribution within that space that optimizes an 
objective function, which is typically a flux within the system, such 
as biomass generation. Accuracy within the stoichiometric reaction 
network is critical to the performance of such constraint-based tech-
niques15,16. Current metabolic reconstructions include consumption 
reactions, such as superoxide dismutase and catalase, and genera-
tion reactions involved in cofactor biosynthesis and alternate car-
bon metabolism, but are devoid of generation reactions that account 
for the majority of ROS produced17 (Supplementary Table 2).  
To construct a metabolic model capable of estimating ROS produc-
tion, we added 266 additional ROS production reactions to the E. coli 
GSMM17, one O2−- and one H2O2-producing reaction for each of the 
133 potential sources (Online Methods, Supplementary Methods 
and Supplementary Table 1). These potential ROS sources included 
all enzymes known to generate H2O2 and O2− in E. coli11,13,17,18, and 
this framework allowed separate (independent species balances), but 
simultaneous, modeling of H2O2 and O2− production in E. coli.

Optimization of an objective function is a critical feature of constraint- 
based techniques, and maximizing for biomass generation has 
proven to be effective in predicting redistribution of metabolic flux19. 
However, when presented with competing pathways, constraint-based 
methods will identify the most efficient pathway in terms of cellular 
resources as the one that carries flux. ROS-generating reactions are 
less efficient competing pathways where reducing equivalents are lost 
to O2 instead of being transferred to the intended acceptor. Therefore, 
addition of ROS-generating reactions to a GSMM is necessary to 
model ROS metabolism, but insufficient because the reactions will not 
carry flux (Supplementary Methods). To address this, we recognized 
that ROS-generating reactions are coupled to their more efficient 
counterpart, in the sense that initial electron transfer from reactant 
to electron carrier proceeds normally and is dictated by requirements 
for the intended products, and that it is the promiscuity of the reduced 
electron carrier with O2 that generates ROS. Thus, ROS flux is a func-
tion of the number of electrons transferred to the electron carrier, and 
consequently dependent on the reaction flux of the intended reaction. 
Therefore, in this study, the flux of O2− and H2O2 from ROS-generating  
enzymei was assumed to be proportional to the reaction flux, vi. 
This assumption results in proportionality between ROS flux from 
enzymei and the number of electrons transferred by enzymei, and is 
accomplished by coupling the intended enzyme reaction to both its 
O2− and H2O2 side reactions (Online Methods and Supplementary 
Methods). This coupling requires specification of the proportion of 

electrons that flow to O2 to form O2− and H2O2 for each of the 133 
potential ROS sources. These values vary considerably from enzyme 
to enzyme12,20, and are largely undefined owing to the absence of  
in vivo measurements. With this indeterminacy in mind, we employed 
an approach using ensembles of models.

Two ensembles of ROS-GSMMs were constructed, each with 1,000 
different models (Supplementary Methods). The proportions of 
electron flow from reactioni to generate O2− and H2O2 were cap-
tured by the constants ci O, 2

 and ci H O, 2 2 (Supplementary Methods 
and Supplementary Dataset). One ensemble derived these constants 
from a Gaussian distribution to model a distributed ROS production 
network (many significant generators), whereas the other ensemble 
derived these constants from an exponential distribution to model 
a centralized ROS production network (few significant generators). 
Further, it was specified that ROS could only be produced from these 
reactions and not consumed, with the exception of the O2− attack of 
Fe-S centers, and that the in silico O2− and H2O2 production rates of 
the wild-type GSMM had to match the best available experimental 
estimates (Online Methods and Supplementary Methods). Thus, 
every stoichiometric reaction network within the ensembles had 
the exact same production rate of O2− and H2O2 for its wild-type 
GSMM. Also, the existence of alternative optimal solutions for ROS 
production of each wild-type network was examined using flux vari-
ability analysis. At a biomass production rate of 100%, all wild-type 
networks generate a unique solution for the flux of H2O2 and O2− 
(Supplementary Methods).

With these ensembles, we explored in silico how perturbations to 
the metabolic network alter basal ROS production. We performed 
a systematic gene-deletion analysis in which we removed genes one 
at a time and recalculated reaction fluxes, while optimizing for bio-
mass generation (Online Methods and Supplementary Methods). 
This provided quantitative distributions of ROS production (H2O2 
and O2−) from mutant E. coli (Fig. 1) and allowed us to identify 
deletions likely to alter basal ROS production, as measured by the 
mean ROS production level (Fig. 2a,b and Supplementary Fig. 1a).  
To account for variable growth rates of mutant strains, we normalized 
ROS flux by biomass production (BM), and calculations are therefore 
H2O2/BM and O2−/BM (mmol/g dry weight (DW) produced). From 
our analysis of bacteria grown in aerobic glucose minimal media (see 
Supplementary Table 3 for constraints imposed by transcriptional 
regulation), we identified genes whose deletions were most likely to 
increase ROS production, including those encoding for ATP synthase 
(atpA-I), pyruvate dehydrogenase (aceEF, lpd), NADH dehydroge-
nase complex I (nuoABCE-N), glutamate dehydrogenase (gdhA), 
cytochrome bo (cyoABCD) and triose phosphate isomerase (tpiA) 

Figure 1 Systems approach to enhance 
microbial ROS production. Left, methodology  
for the development and validation of an 
ensemble of systems-level models of E. coli 
metabolism for estimation of basal ROS 
production. ROS-generating reactions were 
incorporated into a metabolic reconstruction 
and flux balance analysis (FBA) framework17. 
Network perturbations by single-gene knockouts 
were done in silico using FBA to identify 
alterations that affect ROS production. Right,  
in silico predictions were evaluated experimentally 
by generating mutants and measuring their 
ROS production and susceptibility to killing by 
oxidants and antibiotics. Trans., transition.
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(Supplementary Table 4). Investigation of the flux distributions for 
these mutants identified a general trend for ROS production where 
predicted increases correlated with inefficiencies in the production 
or usage of ATP.

To validate our approach and in silico analysis, we experimentally 
tested a series of deletions of genes that encode enzymes within glyco-
lysis, the pentose-phosphate pathway, the Entner-Doudoroff pathway, 

the TCA cycle, the glyoxylate shunt, aerobic respiration, acetate 
metabolism and glutamate metabolism (Fig. 2c,d and Supplementary 
Fig. 1b). This collection of enzymes included those predicted to 
increase ROS (targets) as well as those predicted to leave ROS pro-
duction unchanged (negative controls). We note that our predictions 
included all 21 genetic mutants tested, both targets and negative con-
trols, and that only those enzymes that were experimentally tested are 
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Figure 2 In silico predictions and experimental measures of H2O2 and O2
− levels. (a) Predicted H2O2 levels of various mutants compared to wild type. 

Blue, strains whose mean H2O2 production levels were simulated to be >5% higher than wild type over both ensembles; yellow, strains whose mean 
H2O2 production levels were simulated to be <5% higher. (b) Predicted O2

− levels of various mutants compared to wild type. Blue, strains whose mean 
O2
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− production levels were 

simulated to be <5% higher. (c) Experimentally measured relative fluorescence/A600 of strains with the H2O2-sensitive reporter (dps promoter-gfp). Blue, 
strains that were experimentally measured to have higher levels of H2O2 compared with wild type (P < 0.05); yellow, strains that were experimentally 
measured to have levels of H2O2 that do not exceed those of wild type. (d) Experimentally measured relative fluorescence/A600 of strains with the  
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−-sensitive reporter (soxS promoter-gfp). Blue, strains that were experimentally measured to have increased levels of O2
− compared with wild type  

(P < 0.05); yellow, strains that were experimentally measured to have levels of O2
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essential in our media conditions. Gray denotes genes that were not experimentally examined (for consistency between diagrams, these genes were also 
denoted by gray in a and b, although in silico predictions were computed).
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color-coded in Figure 2 and Supplementary 
Figure 1. We selected isozymes for testing 
on the basis of literature evidence that sug-
gested their removal would most closely 
reflect model assumptions, and we did not 
test deletions of pyruvate dehydrogenase 
and triose-phosphate isomerase because 
they did not grow in minimal glucose media 
(Supplementary Methods).

To measure O2−, we used a SoxR-controlled 
GFP-reporter system, whereas to measure 
H2O2, we used both an OxyR-controlled GFP-
reporter system and the direct-sensing HyPer 
protein (Online Methods). Our experimental 
results showed 80–90% qualitative agreement 
with our in silico predictions of H2O2 and 
O2− production (Fig. 2 and Supplementary 
Fig. 1; correct predictions: dps-GFP: 19/21, 
soxS-GFP: 17/21, HyPer: 17/21). The prob-
abilities that these levels of agreement would 
have occurred by chance, using the null 
hypothesis that random segregation of the  
21 genes into targets and negative controls 
would match experimental results as well as 
predictions from our modeling approach, are 
3.7 × 10−4 (dps-GFP), 1.0 × 10−2 (soxS-GFP) and  
6.2 × 10−3 (HyPer) (Online Methods). These experimental results 
 suggest that our systems-level approach using model ensembles enables 
predictable tuning of ROS production in E. coli.

We next asked if increased basal production of O2− and/or 
H2O2 would make such strains more susceptible to killing by oxi-
dants. We tested the oxidants O2− (generated via menadione) and 
H2O2 because of their inclusion in the model and importance for 
antibiotic action3; we chose NaOCl (bleach) because it is used as 
a biocide. Strains chosen for testing of oxidant sensitivity were 
those with in silico predictions of increased production (targets) 
or unchanged production (negative controls) that was confirmed 
by experimental results (Fig. 2). Our results indicate that increased 
basal production of O2− or H2O2 generally increases microbial sus-
ceptibility to oxidative attack (Fig. 3). Strains with genetic deletions 
that increase ROS production were more susceptible to oxidants, 
whereas the negative-control strains, which had wild-type produc-
tion levels of ROS, did not. The probability this enrichment would 
have been observed by random selection is 2.5 × 10−5 and demon-
strates that increased production of O2− and H2O2 can potentiate 
killing by oxidants. We note that some mutant strains predicted to 
increase ROS production conferred increased susceptibility to all 
oxidants tested ( cyoA and sdhC), whereas others showed selec-
tive increases in sensitivity (e.g., zwf), suggesting that sensitivity 
to one oxidant does not always translate to other oxidants. This is 
not surprising, and likely derives from the differences in biochemi-
cal activity of the oxidants and the distinct cellular-death pathways 
they induce20,21. Our results clearly demonstrate that increasing 

endogenous production is a robust strategy to enhance the suscep-
tibility of microbes to oxidative stress.

Bactericidal antibiotics have been shown to share a common 
mechanism of cell death that involves the production of ROS3.  
We investigated whether increased basal production of ROS could 
potentiate the action of bactericidal antibiotics (the -lactam amp-
icillin, the fluoroquinolones ofloxacin and ciprofloxacin, and the 
aminoglycoside gentamicin) (Fig. 4). Three of the validated targets 
( cyoA, nuoG, sdhC) had increased sensitivity to both -lactam 
and fluoroquinolone antibiotics (Fig. 4a,b and Supplementary 
Fig. 2a) and one of the targets ( pta) exhibited increased sensitivity to 
only fluoroquinolones (Fig. 4b and Supplementary Fig. 2a), whereas 
all of the negative-control strains displayed wild-type sensitivity to 
both antibiotic classes (Fig. 4c,d and Supplementary Fig. 2b). Our 
approach therefore correctly predicted strain sensitivity to both  

-lactams and fluoroquinolone antibiotics over 70% of the time. We 
also tested sensitivity to aminoglycosides, though we reasoned that 
increased killing, in general, would not be observed. This expec-
tation was based on the fact that many of the gene deletions that 
increase basal ROS production negatively affect proton motive force, 
which is important for aminoglycoside uptake22. As expected, the 
negative controls had similar sensitivity to gentamicin as wild type, 
whereas many targets had decreased sensitivity (Supplementary 
Fig. 2c,d). We note that atpC had increased sensitivity toward 
gentamicin, which we believe may be the result of its positive impact 
on proton motive force23 as well as its effect on basal ROS produc-
tion. These data indicate that bactericidal antibiotic primary target 
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 interactions must be enabled (e.g., by antibiotic uptake) to leverage 
ROS production as an adjuvant therapy. Accordingly, we expected 
and demonstrated that the activities of bacteriostatic antibiotics, 
which do not produce ROS6, are unaffected by increases in basal 
ROS production (Supplementary Fig. 3).

We also asked whether chemical inhibition of one of the validated 
targets could increase sensitivity to oxidants and bactericidal anti-
biotic treatment. We treated wild type with carboxin, an inhibitor 
of succinate dehydrogenase, and measured susceptibility toward 
H2O2 and ampicillin, respectively. Addition of carboxin alone had 
no effect on the growth of wild-type cells (Fig. 4e,f). However, wild-
type cells treated with H2O2 and carboxin demonstrated increased 
sensitivity compared to wild-type cells treated with H2O2 alone 
(Fig. 4e). Similarly, wild-type cells treated with ampicillin and car-
boxin were more sensitive to the antibiotic than cells treated with 
ampicillin alone (Fig. 4f). To more fully examine this synergy, we 
conducted a systematic drug screen spanning five concentrations for 
each compound (carboxin and ampicillin) including the untreated 
sample. This allowed us to calculate that carboxin concentrations of 
250 M or greater are synergistic with ampicillin concentrations of  
7.5–10 g/ml, using the Bliss Independence and Highest Single  
Agent models of drug synergism (Supplementary Fig. 4). These 
results show that chemical inhibition of a predicted and validated 
target (succinate dehydrogenase) is sufficient to increase sensitiv-
ity to oxidative attack and antibiotic treatment. Although carboxin 
may not be suitable as an antibiotic adjuvant due to toxicity concerns 
(http://www.epa.gov/oppsrrd1/REDs/factsheets/0012fact_carboxin.
pdf), validation that chemical inhibition of succinate dehydroge-
nase confers sensitivity similar to that of genetic perturbation opens  
the possibility of using chemical library screening to find nontoxic 
inhibitors of bacterial succinate dehydrogenase and other predicted 
targets. Chemical libraries have been successfully screened for  
compounds with antimicrobial properties against pathogenic  
bacteria24 and our method complements this work by identifying 
novel enzyme targets for compounds that may have no antimicrobial 
properties alone, but which enhance the killing efficacy of current 
antibacterial agents.

Here we established a systems-based method to predictably tune 
microbial ROS production. By developing genome-scale ROS met-
abolic models, we were able to predict redistribution of ROS flux 
 resulting from network perturbations and demonstrate experimentally 
that increased ROS flux can potentiate oxidative attack from antibiotic 
and biocide treatment. This approach allows rapid identification of 
antibacterial adjuvant targets and is translatable to other pathogens of 
interest, such as Mycobacterium tuberculosis, Staphylococcus aureus, 
Haemophilus influenzae and Salmonella typhimurium, for which met-
abolic reconstructions are available25–28. In addition, the increasingly 
rapid construction of genome-scale metabolic models will extend the 
breadth of the technique29, opening up the possibility of using it to 
target newly identified resistant strains.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Antibiotics and chemicals. All chemicals and antibiotics were purchased from 
Sigma or Fisher Scientific. Concentrated stock solutions of menadione, H2O2, 
NaOCl and all antibiotics were prepared fresh daily. H2O2, NaOCl, ampicil-
lin and gentamicin were diluted with or dissolved in sterile deionized water. 
Ofloxacin and ciprofloxacin were dissolved in 0.1 N NaOH. Tetracycline was 
dissolved in 50% ethanol (v/v). Menadione, carboxin and chloramphenicol 
were dissolved in 100% ethanol.

Strains and media. E. coli MG1655 was used in this study. Genetic dele-
tions of aceA, appB, atpC, cyoA, edd, fumB, fbaB, gdhA, gltB, gnd, mqo, nuoG, 
pfkB, pta, pykA, rpiB, sdhC, sucC, talB, tktB and zwf were transduced from the 
Keio single-gene deletion knockout library30 into MG1655 using the P1 phage 
method, and confirmed with PCR. The medium used for all experiments was 
M9 minimal media with 10 mM glucose as the sole carbon source or MOPS 
minimal media with 10 mM glucose (for the HyPer protein experiments).

Plasmids. The O2− response sensor used in this study was constructed previ-
ously7, and used the native soxS promoter upstream of the gfpmut2 gene. The 
H2O2 response sensor used the same plasmid backbone and was constructed 
by PCR-amplifying the native dps promoter and cloning it into the BamHI 
and XhoI restriction sites, which formerly contained the soxS promoter. The 
forward primer for PCR was GCGCCTCGAGCCGCTTCAATGGGGTCTA
CGCT and the reverse primer was GGCCGGATCCTCGGAGACATCGTTG
CGGGTAT. The H2O2 response sensor was confirmed to increase expression 
of GFP upon addition of H2O2.

GFP reporter assays. Fluorescent measurements were done on a SpectraMax 
M5 plate reader (Molecular Devices) using Costar black, clear, flat bottom 96-
well plates (Fisher). Each well contained 195 L of M9 minimal glucose media 
with ampicillin (100 g/mL) and 5 L of overnight culture (plasmids carry 
an AmpR gene for selection). Overnight cultures were grown in M9 minimal 
glucose media. Strains were grown in the plate reader at 37 °C with shak-
ing. OD600 and fluorescence (excitation: 488 nm, emission: 520 nm, bottom 
read) were monitored every 10 min. Fluorescence/A600 values were calculated 
using ordinary least-squares regression for measurements between A600 = 0.1 
and A600 = 0.4. [Yes]Values reported in Supplementary Table 5 are the rela-
tive mean and standard error mean for at least three independent biological 
replicates. P values were calculated using a single-tailed, two-sample t-test, 
assuming unequal variance.

HyPer assays. The HyPer protein is a fluorescent probe that was made by 
inserting a circularly permuted yellow fluorescent protein into the H2O2-
 sensitive regulatory domain of OxyR31. In the presence of increasing con-
centrations of H2O2, the probe’s excitation peak shifts ratiometrically from 
420 nm to 500 nm, which allows for quantitative measurement of cellular 
H2O2 levels31,32. HyPer is based on an E. coli H2O2-sensing domain, and 
has been shown to be effective at sensing H2O2 within E. coli31. HyPer was 
provided from the manufacturer (Evrogen) as an IPTG-inducible gene in a 
pQE30 vector (ampicillin selection marker)31. Single colonies of strains were 
inoculated into LB media supplemented with 50 g/mL ampicillin and grown 
overnight at 37 °C. The atpC and zwf strains were run separately with wild 
type because those strains grew significantly slower than the other mutant 
strains. Strains were inoculated 1:100 into MOPS minimal media plus 10 mM 
glucose and 50 g/mL ampicillin, and grown to an A600 of 0.2–0.3. All cultures 
were then diluted with MOPS minimal media plus 50 g/mL ampicillin in a 
black, clear-bottom 96-well plate to a final A600 of 0.05, in a final volume of 
200 L per well. 20 L of mineral oil (Sigma-Aldrich) was added to each well 
to prevent evaporation. Strains were grown with and without 75 M IPTG 
in a SpectraMax M5 plate reader (Molecular Devices) at 37 °C with shaking, 
and A600 and fluorescence (excitation: 420 nm and 500 nm, emission: 530 nm, 
bottom read) were monitored every 15 min for 12 h. Measurements between 
A600 = 0.2 and A600 = 0.6 were corrected for background strain fluorescence 
by subtracting the fluorescence values for uninduced cultures at the same 
cell density, as measured by A600. The 420 nm × 500 nm curve was linear 
over this region, and therefore ordinary least-squares regression was used to 
interpolate between time points. The 500 nm excitation fluorescence value 

that corresponded with 55 fluorescence units from 420 nm excitation was 
calculated and the 500/420 ratio was obtained for all strains. Values reported 
in Supplementary Table 6 are the relative mean and standard error mean 
for three independent biological replicates. P values were calculated using a 
single-tailed, two-sample t-test, assuming unequal variance.

Antimicrobial sensitivity assays. Strains were grown aerobically from an 
initial inoculation of A600 = 0.01 to A600 = 0.16–0.20 in 250 mL baffled flasks 
filled to 1/10th the total volume and shaken at 300 r.p.m. at 37 °C. For mena-
dione, H2O2 and antibiotic sensitivity assays, time-zero samples were collected 
(200–400 L), then 1 mL aliquots were transferred to 14 mL test tubes, and 
appropriate volumes of menadione, H2O2 or antibiotic stock solutions, not in 
excess of 15 L, were added to obtain the final concentrations (1 mM mena-
dione, 5 mM H2O2, 7.5 g/mL ampicillin, 100 ng/mL ofloxacin, 15 ng/mL 
ciprofloxacin, 500 ng/mL gentamicin, 10 g/mL tetracycline and 15 g/mL 
chloramphenicol). For NaOCl, due to its reactivity with media components33, 
10 mL of culture was centrifuged at 3,000 r.p.m. for 10 min in a benchtop 
centrifuge, 9.5 mL of the supernatant was removed and the cell pellet was 
resuspended with 9.5 mL of sterile PBS at pH 7.2. The suspension was spun 
down again at 3,000 r.p.m. for 10 min, and 9.5 mL of the supernatant removed. 
The cell pellet was resuspended with 4.5 mL of sterile PBS. The cell density 
was adjusted with sterile PBS to achieve an A600 = 0.2. Time-zero samples 
were collected (200–400 L), 1-mL aliquots were transferred to 14-mL test 
tubes and NaOCl stock solution was added to obtain the final concentration 
(20 M NaOCl). At the specified times (1, 2 h for menadione, H2O2, NaOCl; 
1, 2, 3, 4 h for antibiotics), sample aliquots were collected (200–400 L). All 
samples were immediately centrifuged at 10 k r.p.m. in a microcentrifuge, 
95% of the supernatant was removed and the cell pellets were resuspended 
in PBS. Samples were serially diluted and plated on LB agar plates, which 
were then incubated overnight at 37 °C. Colony forming units were counted 
approximately 16-18 h after plating.

Carboxin inhibitor experiments. Strains were grown aerobically from an ini-
tial inoculation of A600 = 0.01 to A600 = 0.16–0.20 in 250-mL baffled flasks filled 
to 1/10th the total volume and shaken at 300 r.p.m. at 37 °C. Time-zero samples 
were collected (200–400 L), then 1 mL aliquots were transferred to 14-mL 
test tubes. Carboxin solubilized in 100% ethanol or ethanol alone was added 
to the tubes. Carboxin was added at a final concentration of 500 M. H2O2 
or ampicillin stock solutions were added to obtain the final concentrations of 
5 mM H2O2 and 10 g/mL ampicillin. A dose response was also performed 
of both carboxin (0, 250, 500, 750 and 1,000 M) and ampicillin (0, 5, 7.5, 10 
and 15 g/mL) to determine if the two compounds demonstrate a synergistic 
interaction. Drug synergism was calculated using the Bliss Independence and 
Highest Single Agent models34,35. Specifically, the formula, BICAB = A + B − 
AB (1), was used to calculate synergism with the Bliss Independence model.  
A and B are the effects of the two drugs in isolation, whereas, BICAB is the com-
bined effect of the two drugs as predicted by the Bliss Independence model. 
If CAB, the experimentally determined combined effect of the two drugs, is  
>BICAB, synergy is observed. In contrast, in the Highest Single Agent model, 
if CAB > max(A, B), synergy is observed. As we were monitoring cell death, the 
quantitative effect of each compound was defined as the fractional reduction 
of the population, R = 1 − CFUt/CFU0, where CFUt is the number of CFUs 
measured after treatment, and CFU0 is the number of CFUs measured before 
treatment. R = 1 indicates complete loss of the population, R = 0 indicates a 
population in stasis and R < 0 indicates a growing population. As carboxin  
was non-lethal and allowed significant growth, even at concentrations as high 
as 1 mM, the Highest Single Agent model was a much more stringent measure 
of synergy than the Bliss Independence model. To prove this, let us rewrite 
the Bliss Independence model as follows: BICAB = A(1 − B) + B (2). If A is a 
compound that reduces CFUs, such as ampicillin, its effect above the MIC will 
be 0  A  1, whereas if B is a compound that allows growth at all concentra-
tions, its effect will be B < 0 regardless of the concentration. Rearrangement 
of the above yields BICAB/A = 1-B + B/A (3). As equation (3) yields BICAB/ 
A < 1 for all B < 0 and 0 < A < 1, the Highest Single Agent model requires 
CAB/A > 1 and the Bliss Independence model requires CAB/BICAB > 1 for 
synergy, the Highest Single Agent model will always be a more strict synergy 
requirement under these conditions. Synergy can readily be observed from 

np
g

©
 2

01
3 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



NATURE BIOTECHNOLOGYdoi:10.1038/nbt.2458

the relative survival curves in Supplementary Figure 4 (curves substantially 
lower than 1) where 7.5 and 10 g/mL ampicillin synergize with carboxin 
concentrations from 250–1,000 M.

Modeling E. coli ROS metabolism. Systems-level metabolic modeling was 
performed using flux balance analysis and the COBRA Toolbox36. Aerobic 
E. coli metabolism (O2 uptake = −18.5 mmol/gDW/h17) was modeled using 
iAF1260 with glucose (glucose uptake = −11 mmol/gDW/h17) and ammonia 
as the sole carbon and nitrogen sources. The model was augmented with ROS-
generating reactions as described in the Supplementary Methods. Single-gene 
deletion analysis was done using the built-in COBRA function. Complete 
modeling details are provided in the Supplementary Methods.

Statistical analysis of model performance. Statistical significance was 
assessed using the null hypothesis that random selection of genes would match 
experimental results as well as predictions from our modeling approach. For 
the GFP reporter systems, where N genes exhibited an increased ROS/BM 
compared to wild type (P < 0.05), and M genes did not (N + M: total number 
of genes tested), we identified the number of genes, P, our approach pre-
dicted to increase ROS/BM. We calculated the (a) total number of ways to pick  
P genes from N + M, and then calculated the (b) number of ways to pick  
P genes that would yield C correct predictions, C being defined as the correctly 
predicted number of genes our approach identified to increase ROS/BM. The 
ratio of (b)/(a) is the probability that random selection would yield the same 
frequency of correct predictions as our approach. Agreement was assessed by 

calculating the number of predictions that agreed with experimental results. 
For the O2−-sensing GFP reporter, 17 of the 21 genes (81%) experimentally 
tested qualitatively agreed with predictions, whereas for the H2O2-sensing GFP 
reporter, 19 of the 21 genes (90%) experimentally tested qualitatively agreed 
with predictions. Identical procedures were used in the analysis of HyPer 
results, except that a P value of 0.1 was used to identify genes that exhibited 
an increased H2O2/BM compared to wild type. For antimicrobial sensitiv-
ity assays, statistical significance was assessed similarly, except that N in this 
case is the number of genes that exhibited a twofold increase in susceptibility 
toward any oxidant after a treatment time of 2 h.
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